Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Carnegie Mellon U. computational method could speed metallic glass design, testing

31.08.2004


Want a tennis racket that propels balls faster than a race car or a sturdy ship hull that never rusts? Finding the recipes for such remarkable materials – called amorphous metals – should be easier using a new computational approach developed by Carnegie Mellon University physicist Michael Widom.



Described in an upcoming issue of Phys. Rev. B (September 1, 2004), this method already has been used to virtually generate recipes for more than 1,700 structures, many of which have never before been analyzed. The novel approach should prove valuable in guiding future bench testing and sparing countless hours of laboratory trial and error to generate amorphous metals.

Alloys for everyday materials like stainless steel are made by combining a metal with other elements. The resulting metals crystallize into lattices in which atoms line up in orderly arrangements. Defects in these crystals inevitably weaken materials made from them, leading to fractures and corrosion.


Amorphous metals, otherwise known as metallic glass, lack these defects because they are disordered materials essentially frozen in place. Consequently, they display remarkable corrosion resistance, strength and elasticity – the “spring-like” property coveted by tennis and golf champions.

Despite their promise, only small quantities of metallic glass have been generated to date because heated alloys require rapid cooling to freeze a glass into place. Quick, uniform cooling of a large quantity of material is difficult, given that elements like to combine with one another in energetically favorable combinations, resulting in impurities that crystallize in an amorphous glass as it cools.

Using the new computational method, developed by Widom, scientists now can virtually predict what structures will crystallize out of an amorphous metal as it cools and how “spicing” a mixture with new elements prevents the emergence of these impurities.

Widom and his colleagues, including Yang Wang from the Pittsburgh Supercomputing Center, Marek Mihalkovic from the Slovakian Academy of Sciences and Don Nicholson from Oak Ridge National Laboratory, used powerful computing to systematically mix different amounts of elements in iron alloys and identify potential metallic glass compositions.

“Our method allows us to calculate energies associated with the formation of stable crystalline structures within these alloys,” said Widom, a professor of physics. These energies reflect the drive different element compositions have to crystallize out of an amorphous glass. “We can identify an unstable mixture to quench into a glass, see what nearby structures are likely to crystallize out, and thwart their formation,” he added.

Given this information, Widom then can virtually add new elements to an alloy recipe and see how they “confuse” the tendency of crystals to form. “Metallic glass is not the most natural state to form as an alloy cools. To make it easy to form glass you want to rearrange things so that the crystalline alternatives are less likely to result,” said Widom. In work to date, Widom already has generated several potential glass alloy mixtures and has shown that “spicing” an iron alloy mixture with a small amount of the large element Yttrium facilitates metallic glass production. Independent laboratory research at University of Virginia and at Oak Ridge National Laboratory confirms this finding. “Ultimately, we would like to identify candidate mixtures that could be cooled in bulk to form novel metallic glasses,” he said.

The new approach is sound, according to Widom, who has used it to propose structures for previously unsolved compounds and also has shown that it generates findings that match experimentally produced results, where they are available.

While this approach is highly promising to study iron-based metallic glasses that could be used in structures such as ship hulls, it also could be used to evaluate metallic glasses made from other alloys. These include aluminum-based mixtures that could yield lightweight, stress-resistant metallic glasses for airplanes.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Process Engineering:

nachricht CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass
25.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>