Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Carnegie Mellon U. computational method could speed metallic glass design, testing

31.08.2004


Want a tennis racket that propels balls faster than a race car or a sturdy ship hull that never rusts? Finding the recipes for such remarkable materials – called amorphous metals – should be easier using a new computational approach developed by Carnegie Mellon University physicist Michael Widom.



Described in an upcoming issue of Phys. Rev. B (September 1, 2004), this method already has been used to virtually generate recipes for more than 1,700 structures, many of which have never before been analyzed. The novel approach should prove valuable in guiding future bench testing and sparing countless hours of laboratory trial and error to generate amorphous metals.

Alloys for everyday materials like stainless steel are made by combining a metal with other elements. The resulting metals crystallize into lattices in which atoms line up in orderly arrangements. Defects in these crystals inevitably weaken materials made from them, leading to fractures and corrosion.


Amorphous metals, otherwise known as metallic glass, lack these defects because they are disordered materials essentially frozen in place. Consequently, they display remarkable corrosion resistance, strength and elasticity – the “spring-like” property coveted by tennis and golf champions.

Despite their promise, only small quantities of metallic glass have been generated to date because heated alloys require rapid cooling to freeze a glass into place. Quick, uniform cooling of a large quantity of material is difficult, given that elements like to combine with one another in energetically favorable combinations, resulting in impurities that crystallize in an amorphous glass as it cools.

Using the new computational method, developed by Widom, scientists now can virtually predict what structures will crystallize out of an amorphous metal as it cools and how “spicing” a mixture with new elements prevents the emergence of these impurities.

Widom and his colleagues, including Yang Wang from the Pittsburgh Supercomputing Center, Marek Mihalkovic from the Slovakian Academy of Sciences and Don Nicholson from Oak Ridge National Laboratory, used powerful computing to systematically mix different amounts of elements in iron alloys and identify potential metallic glass compositions.

“Our method allows us to calculate energies associated with the formation of stable crystalline structures within these alloys,” said Widom, a professor of physics. These energies reflect the drive different element compositions have to crystallize out of an amorphous glass. “We can identify an unstable mixture to quench into a glass, see what nearby structures are likely to crystallize out, and thwart their formation,” he added.

Given this information, Widom then can virtually add new elements to an alloy recipe and see how they “confuse” the tendency of crystals to form. “Metallic glass is not the most natural state to form as an alloy cools. To make it easy to form glass you want to rearrange things so that the crystalline alternatives are less likely to result,” said Widom. In work to date, Widom already has generated several potential glass alloy mixtures and has shown that “spicing” an iron alloy mixture with a small amount of the large element Yttrium facilitates metallic glass production. Independent laboratory research at University of Virginia and at Oak Ridge National Laboratory confirms this finding. “Ultimately, we would like to identify candidate mixtures that could be cooled in bulk to form novel metallic glasses,” he said.

The new approach is sound, according to Widom, who has used it to propose structures for previously unsolved compounds and also has shown that it generates findings that match experimentally produced results, where they are available.

While this approach is highly promising to study iron-based metallic glasses that could be used in structures such as ship hulls, it also could be used to evaluate metallic glasses made from other alloys. These include aluminum-based mixtures that could yield lightweight, stress-resistant metallic glasses for airplanes.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>