Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Carnegie Mellon U. computational method could speed metallic glass design, testing

31.08.2004


Want a tennis racket that propels balls faster than a race car or a sturdy ship hull that never rusts? Finding the recipes for such remarkable materials – called amorphous metals – should be easier using a new computational approach developed by Carnegie Mellon University physicist Michael Widom.



Described in an upcoming issue of Phys. Rev. B (September 1, 2004), this method already has been used to virtually generate recipes for more than 1,700 structures, many of which have never before been analyzed. The novel approach should prove valuable in guiding future bench testing and sparing countless hours of laboratory trial and error to generate amorphous metals.

Alloys for everyday materials like stainless steel are made by combining a metal with other elements. The resulting metals crystallize into lattices in which atoms line up in orderly arrangements. Defects in these crystals inevitably weaken materials made from them, leading to fractures and corrosion.


Amorphous metals, otherwise known as metallic glass, lack these defects because they are disordered materials essentially frozen in place. Consequently, they display remarkable corrosion resistance, strength and elasticity – the “spring-like” property coveted by tennis and golf champions.

Despite their promise, only small quantities of metallic glass have been generated to date because heated alloys require rapid cooling to freeze a glass into place. Quick, uniform cooling of a large quantity of material is difficult, given that elements like to combine with one another in energetically favorable combinations, resulting in impurities that crystallize in an amorphous glass as it cools.

Using the new computational method, developed by Widom, scientists now can virtually predict what structures will crystallize out of an amorphous metal as it cools and how “spicing” a mixture with new elements prevents the emergence of these impurities.

Widom and his colleagues, including Yang Wang from the Pittsburgh Supercomputing Center, Marek Mihalkovic from the Slovakian Academy of Sciences and Don Nicholson from Oak Ridge National Laboratory, used powerful computing to systematically mix different amounts of elements in iron alloys and identify potential metallic glass compositions.

“Our method allows us to calculate energies associated with the formation of stable crystalline structures within these alloys,” said Widom, a professor of physics. These energies reflect the drive different element compositions have to crystallize out of an amorphous glass. “We can identify an unstable mixture to quench into a glass, see what nearby structures are likely to crystallize out, and thwart their formation,” he added.

Given this information, Widom then can virtually add new elements to an alloy recipe and see how they “confuse” the tendency of crystals to form. “Metallic glass is not the most natural state to form as an alloy cools. To make it easy to form glass you want to rearrange things so that the crystalline alternatives are less likely to result,” said Widom. In work to date, Widom already has generated several potential glass alloy mixtures and has shown that “spicing” an iron alloy mixture with a small amount of the large element Yttrium facilitates metallic glass production. Independent laboratory research at University of Virginia and at Oak Ridge National Laboratory confirms this finding. “Ultimately, we would like to identify candidate mixtures that could be cooled in bulk to form novel metallic glasses,” he said.

The new approach is sound, according to Widom, who has used it to propose structures for previously unsolved compounds and also has shown that it generates findings that match experimentally produced results, where they are available.

While this approach is highly promising to study iron-based metallic glasses that could be used in structures such as ship hulls, it also could be used to evaluate metallic glasses made from other alloys. These include aluminum-based mixtures that could yield lightweight, stress-resistant metallic glasses for airplanes.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Process Engineering:

nachricht Innovative process for environmentally friendly manure treatment comes onto the market
03.05.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>