Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Carnegie Mellon U. computational method could speed metallic glass design, testing

31.08.2004


Want a tennis racket that propels balls faster than a race car or a sturdy ship hull that never rusts? Finding the recipes for such remarkable materials – called amorphous metals – should be easier using a new computational approach developed by Carnegie Mellon University physicist Michael Widom.



Described in an upcoming issue of Phys. Rev. B (September 1, 2004), this method already has been used to virtually generate recipes for more than 1,700 structures, many of which have never before been analyzed. The novel approach should prove valuable in guiding future bench testing and sparing countless hours of laboratory trial and error to generate amorphous metals.

Alloys for everyday materials like stainless steel are made by combining a metal with other elements. The resulting metals crystallize into lattices in which atoms line up in orderly arrangements. Defects in these crystals inevitably weaken materials made from them, leading to fractures and corrosion.


Amorphous metals, otherwise known as metallic glass, lack these defects because they are disordered materials essentially frozen in place. Consequently, they display remarkable corrosion resistance, strength and elasticity – the “spring-like” property coveted by tennis and golf champions.

Despite their promise, only small quantities of metallic glass have been generated to date because heated alloys require rapid cooling to freeze a glass into place. Quick, uniform cooling of a large quantity of material is difficult, given that elements like to combine with one another in energetically favorable combinations, resulting in impurities that crystallize in an amorphous glass as it cools.

Using the new computational method, developed by Widom, scientists now can virtually predict what structures will crystallize out of an amorphous metal as it cools and how “spicing” a mixture with new elements prevents the emergence of these impurities.

Widom and his colleagues, including Yang Wang from the Pittsburgh Supercomputing Center, Marek Mihalkovic from the Slovakian Academy of Sciences and Don Nicholson from Oak Ridge National Laboratory, used powerful computing to systematically mix different amounts of elements in iron alloys and identify potential metallic glass compositions.

“Our method allows us to calculate energies associated with the formation of stable crystalline structures within these alloys,” said Widom, a professor of physics. These energies reflect the drive different element compositions have to crystallize out of an amorphous glass. “We can identify an unstable mixture to quench into a glass, see what nearby structures are likely to crystallize out, and thwart their formation,” he added.

Given this information, Widom then can virtually add new elements to an alloy recipe and see how they “confuse” the tendency of crystals to form. “Metallic glass is not the most natural state to form as an alloy cools. To make it easy to form glass you want to rearrange things so that the crystalline alternatives are less likely to result,” said Widom. In work to date, Widom already has generated several potential glass alloy mixtures and has shown that “spicing” an iron alloy mixture with a small amount of the large element Yttrium facilitates metallic glass production. Independent laboratory research at University of Virginia and at Oak Ridge National Laboratory confirms this finding. “Ultimately, we would like to identify candidate mixtures that could be cooled in bulk to form novel metallic glasses,” he said.

The new approach is sound, according to Widom, who has used it to propose structures for previously unsolved compounds and also has shown that it generates findings that match experimentally produced results, where they are available.

While this approach is highly promising to study iron-based metallic glasses that could be used in structures such as ship hulls, it also could be used to evaluate metallic glasses made from other alloys. These include aluminum-based mixtures that could yield lightweight, stress-resistant metallic glasses for airplanes.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>