Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developing tools for reliable ’gene chip’ measurements

25.05.2004


Microarrays, sometimes called "gene chip" devices, enable researchers to monitor the activities of thousands of genes from a single tissue sample simultaneously, identifying patterns that may be novel indicators of disease status. But generating consistent, verifiable results is difficult because of a lack of standards to validate these analyses, scientists from the National Institute of Standards and Technology (NIST) and collaborators warn in the May 20 online issue of Clinical Chemistry.



Microarrays are keychain-sized devices with as many as several million tiny spots, each of which examines genes of interest simultaneously using minute sample volumes. This highly sensitive technology is relatively new, and standard procedures to ensure the reliability and comparability of results are only beginning to emerge. For instance, results can change as a result of differences in how tissues are collected and processed; variations in how the molecules are counted, attached to substrates and labeled for detection; deviations from recommended protocols by lab personnel; and malfunctioning or miscalibrated equipment. Such variations need to be controlled before this technology can be used reliably in clinical settings and in devices requiring regulatory approval, according to the paper.

As a first step toward addressing reliability issues, a consortium co-led by NIST and industry is developing standards that will satisfy needs identified at a 2003 workshop. At the workshop, organized and hosted by NIST, leaders in the microarray field from industry, government and universities recommended the development of a well-characterized set of ribonucleic acid (RNA) molecules whose identity and concentration are known. RNA is an important product of gene activity. Users will be able to validate the results of gene chip analyses by adding such a reference material to their samples and comparing the measured values to what would be expected for them. Such a reference material also will enable technology developers and researchers to assess the performance of their assays.



The paper was co-authored by scientists from Genomic Health, Inc., Agilent Technologies, the U.S. Food and Drug Administration, and The Institute for Genome Research.

Laura Ost | NIST
Further information:
http://www.nist.gov/

More articles from Process Engineering:

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>