Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developing tools for reliable ’gene chip’ measurements

25.05.2004


Microarrays, sometimes called "gene chip" devices, enable researchers to monitor the activities of thousands of genes from a single tissue sample simultaneously, identifying patterns that may be novel indicators of disease status. But generating consistent, verifiable results is difficult because of a lack of standards to validate these analyses, scientists from the National Institute of Standards and Technology (NIST) and collaborators warn in the May 20 online issue of Clinical Chemistry.



Microarrays are keychain-sized devices with as many as several million tiny spots, each of which examines genes of interest simultaneously using minute sample volumes. This highly sensitive technology is relatively new, and standard procedures to ensure the reliability and comparability of results are only beginning to emerge. For instance, results can change as a result of differences in how tissues are collected and processed; variations in how the molecules are counted, attached to substrates and labeled for detection; deviations from recommended protocols by lab personnel; and malfunctioning or miscalibrated equipment. Such variations need to be controlled before this technology can be used reliably in clinical settings and in devices requiring regulatory approval, according to the paper.

As a first step toward addressing reliability issues, a consortium co-led by NIST and industry is developing standards that will satisfy needs identified at a 2003 workshop. At the workshop, organized and hosted by NIST, leaders in the microarray field from industry, government and universities recommended the development of a well-characterized set of ribonucleic acid (RNA) molecules whose identity and concentration are known. RNA is an important product of gene activity. Users will be able to validate the results of gene chip analyses by adding such a reference material to their samples and comparing the measured values to what would be expected for them. Such a reference material also will enable technology developers and researchers to assess the performance of their assays.



The paper was co-authored by scientists from Genomic Health, Inc., Agilent Technologies, the U.S. Food and Drug Administration, and The Institute for Genome Research.

Laura Ost | NIST
Further information:
http://www.nist.gov/

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>