Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U.S. oils can protect concrete bridge tendons during construction delays

29.04.2004


A Penn State study has shown that there are U.S. oils that can match or exceed the characteristics of the European leader for temporary corrosion protection of concrete bridge tendons.


An undamaged tendon (left) a tendon subjected to the salt solution test and the test tube.
Photo Credit: Greg Grieco, Penn State



Dr. Andrea Schokker, the Henderson professor of civil engineering, who led the project, says, "The North American post-tensioning industry was considering importing the European product, possibly at higher cost than the oils available in the U.S. market. Our study established that there are adequate products available in North America to do the job."

The study is detailed in the current issue of the Post-Tensioning Institute Journal in a paper, "Bond and Corrosion Studies of Emulsifiable Oils Used for Corrosion Protection in Post-Tensioned Tendons." The authors are Edwin Salcedo-Rueda, a Penn State doctoral candidate in civil engineering; Schokker: Dr. John E. Breen, who holds the Nasser I. Al-Rashid chair in civil engineering at the University of Texas at Austin; and Dr. Michael E. Kreger, professor of civil engineering at Purdue University.


In post-tensioned construction, tendons made of seven twisted steel wires, are inserted into ducts that run the length of pre-cast concrete segments. The tendons are then stretched to put them under tension and anchored at the ends to hold the concrete segments in place. The ducts are eventually filled with portland cement grout which not only protects the steel tendons from corrosion but also distributes the bond with the tendon along its full length. When grouting delays occur, oil may be applied to the steel tendon to prevent corrosion during the unprotected period.

Schokker and her research team tested 19 anti-corrosion oils, 18 North American products and the European leader. The oils were subjected to three environmental tests and one mechanical test. The goal was to find oils that produce the least detrimental effects on the bond between the tendon and grout in addition to good corrosion inhibiting properties.

The environmental tests, which lasted six months, included exposing oil-coated tendons outdoors including an extreme Pennsylvania winter typical of the northern U.S.; laboratory exposure to 73 degrees F with 95 percent humidity comparable to some southern states and contact in sealed tubes with a diluted (five percent) salt solution, semi-controlled temperatures and variable relative humidity similar to saltwater coastal areas.

In the mechanical tests, the research group used a modified standard test to measure the force necessary to pull the tendon out of the grout.

The team found that six of the 18 domestic oils provided adequate corrosion protection in all three test environments. The top products from both the environment and mechanical tests were Citgo Cutting Oil NC 205, Shell/Texaco Dromus ABD and Shore Chemical Emul. Cutting Oil. These products have been recommended for Phase II testing at the University of Texas at Austin in large scale post-tensioned beams to examine bond and ultimate flexural capacity of structural members.

The study was supported by the Texas Department of Transportation and the Federal Highway Administration.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Process Engineering:

nachricht CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass
25.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>