Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yet Another Benefit of Green Tea

19.04.2004


holding a separator funnel containing the company’s environmentally friendly fluid used in ceramic polishing.

Credit: Erica von Koerber, Evon Photography (Tucson, Ariz.)


A close-up of the machine in action. The dark brown rings on the rotating abrasive wheel are from the “lapping swarf.” The swarf is a mixture of the Ventana fluid and ceramic debris particles from the read-write head specimen. During the process, the researchers add the Ventana fluid drop by drop onto the rotating wheel. Centripetal acceleration causes the swarf to move to the outer edge of the rotating wheel.
Credit: Erica von Koerber, Evon Photography (Tucson, Ariz.)


New, biodegradable machining compound is more effective than industry standards

Derived in part from green tea, a new biodegradable machining compound for computer hard drive manufacturing is three to four times more effective than toxic counterparts. In an industry where more than 161 million hard drives leave assembly lines each year, the new compound could significantly improve manufacturing efficiency and minimize environmental risks.

Engineered by John Lombardi of Ventana Research Corporation in Tucson, Ariz., as part of a National Science Foundation (NSF) Small Business Innovation Research (SBIR) grant, the chemical is part of a slurry that polishes the ceramics—made from aluminum oxide and titanium carbide—used in computer hard drive read-write heads.



"The potential merits of this compound are impressive," said James Rudd, the NSF program officer who oversees Ventana’s award. "If confirmed in industrial settings, the three- to four-fold increase in efficiency could mean substantial reductions in hard-drive manufacturing costs, and all with a product that is less corrosive and more environmentally sound."

The new compound is part of a family of machining fluids that bind to polishing debris and rapidly remove tiny particles from the polishing surface. The fluids are critical because imperfections in read-write heads must be less than 10 angstroms high—larger defects can cause the head to crash into the disk, causing data loss.

Ventana formulates its fluid using a combination of synthetic proteins derived from common commercial chemicals and compounds extracted from green tea and other plants. Compared to many natural machining fluid compounds, which are often rare and expensive, the plant chemicals in the Ventana fluid are abundant and easily extractable.

Those chemicals, the same ones responsible for forming tenacious stains in coffee pots and drinking mugs, grant the Ventana fluid its ability to bind to the particle debris formed while polishing read-write heads.

According to Lombardi, the fluid’s possible biocompatibility and high affinity for ceramics and metals may lead to applications in wastewater treatment, where the compound could remove heavy metal contaminants from water, and medicine, where the compound may have advantages for delivering certain cancer treatments.

NSF awards SBIR grants to small businesses for risky, novel research with a potential for commercialization. Through SBIR and the related Small Business Technology Transfer (STTR) programs, NSF encourages partnerships between the small business and the academic sectors to develop a technology base for commercialization.

Comments from the researchers:
"South Tucson is a community currently lacking high technology manufacturing. Ventana was attracted to this location due to the friendly, cooperative and close-knit nature of this community, coupled with the fact that it is located within a designated U.S. Department of Housing and Urban Development Empowerment Zone. Both South Tucson and Tucson are among eight such zones established nationally." – John Lombardi, president of Ventana Research Corporation.

"The engineering requirement for a computer magnetic read-write head is similar to flying a Boeing 747 jet airliner at full throttle a few inches above the ground." – Donald Zipperian, Chief Technical Officer at Pace Technologies, Tucson, Ariz. Zipperian is an expert on the hard-drive manufacturing industry and a business collaborator of Ventana Research.

"The class of benign compounds synthesized by Dr. Lombardi has great potential for use in semiconductor cleaning and polishing operations. These compounds can serve as dispersants and corrosion inhibitors in slurries used for the chemical mechanical planarization of metals. They may also find use in chemical systems used for back-end of line cleaning processes." – Srini Raghavan, Professor, Department of Materials Science and Engineering at the University of Arizona. Raghavan evaluated some of the properties of the fluid for Ventana Research. He is also involved in the NSF-SRC Center for Environmentally Benign Semiconductor Manufacturing at the University of Arizona, where he is planning to evaluate the compounds in his research projects.

Josh Chamot | NSF
Further information:
http://www.nsf.gov/od/lpa/newsroom/pr.cfm?ni=80

More articles from Process Engineering:

nachricht CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass
24.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>