Electronic device standards to yield choicer chops

Choosing the best chops, steaks or other fresh meat products is a tough job. It’s a delicate balancing of leanness, juiciness, taste, marbling and more. Increasingly, meat processors use electronic devices and equipment—such as optical probes, ultrasonic sensors and digital cameras—to evaluate critical fat to meat ratios. In 2003, for instance, electronic devices determined pricing for more than 80 percent of the almost $7.5 billion worth of swine processed in the United States. Multiple devices, as well as different methods for evaluating results can, however, produce different data.

The National Institute of Standards and Technology (NIST) has joined meat industry counterparts, producers, device manufacturers, the United States Department of Agriculture (USDA) and ASTM International (formerly the American Society for Testing and Materials) to standardize the measuring process for pork, beef and, eventually, poultry.

In February, ASTM committees, representing all concerned parties, approved the first two of four draft standards to cover key aspects of the electronic methods used to determine the value of live animals, carcasses and individual cuts. The approved standards outline requirements for installation, operator training, operation, verification, inspection, maintenance, design and construction of devices or systems. The remaining two standards, expected to be approved in the spring of 2004, cover calibration, accuracy and standardized equations for pricing meat. The final standards are expected to be incorporated into new USDA regulations.

Richard Suiter, NIST weights and measures coordinator and chair for an ASTM subcommittee, says, “The new standards will increase consistency and confidence in the measurements across technologies and will benefit everyone—equipment manufacturers, producers, packers and consumers.”

Media Contact

John Blair EurekAlert!

More Information:

http://www.nist.gov/

All latest news from the category: Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors