Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It’s Explosive! New Sensor Technology Patented

11.03.2004


New technology patented by researchers at the University of Wales, Bangor could lead to the development of ultra-sensitive sensors able to detect the presence of explosive materials. The sensors will have many security and military applications including being developed for use in the war against terrorism.



It is the innovative collaboration of molecular biology and chemistry that has enabled the team to develop the novel sensor technology ‘nano-dog’ to be developed to commercial prototype.

Much as the glucose pens used by diabetics employ enzymes to test blood-sugar levels, this complex high-tech sensor uses uniquely adapted and patented enzymes to detect the presence of explosive materials.


Some bacteria contain enzymes which are able to chemically modify many of the commonly used explosives. These bacteria have been used, particularly in the USA, to clean up land contaminated by munitions. The enzymes within the bacteria convert the explosives molecules to less toxic products, cleaning the contamination in the process. In this new process some of these enzymes have been purified from the bacteria and subjected to genetic modification. This modification has enabled the enzymes to adhere to the surface of an electrode sensor, where they remain active. There, they can trigger an electrical signal when activated by the presence of minute amounts of explosives molecules.

Chris Gwenin has been developing the project under the close guidance of Dr Maher Kalaji of the University’s Department of Chemistry and Prof Peter Williams of the School of Biological Sciences. He has been employed under a CASE Studentship, working with University spin-off company, Trwyn, who are now moving towards developing a prototype explosives detector to commercialize the technology.

“The project has moved forward at a tremendous pace, having reached a stage where we are able to patent our unique technology within 18 months of commencement,” said Dr Maher Kalaji. “The collaboration of expertise is what has led to the success. Crucial to the success of the project so far has been the unique combination of expertise from two discrete areas of molecular science. The success has also been aided by Chris Gwenin’s ability to develop new skills and expertise quickly,” commented Dr Maher Kalaji.

Commenting on the development, Professor Roy Evans, Vice-Chancellor of the University, said, “This is what is so exciting about research developments in higher education. The close collaboration of experts within different disciplines can take us to new ground. We have at Bangor a unique combination of expertise and I wish the company every success in taking this project forward commercial development.”

Elinor Elis-Williams | alfa
Further information:
http://www.bangor.ac.uk

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>