Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It’s Explosive! New Sensor Technology Patented

11.03.2004


New technology patented by researchers at the University of Wales, Bangor could lead to the development of ultra-sensitive sensors able to detect the presence of explosive materials. The sensors will have many security and military applications including being developed for use in the war against terrorism.



It is the innovative collaboration of molecular biology and chemistry that has enabled the team to develop the novel sensor technology ‘nano-dog’ to be developed to commercial prototype.

Much as the glucose pens used by diabetics employ enzymes to test blood-sugar levels, this complex high-tech sensor uses uniquely adapted and patented enzymes to detect the presence of explosive materials.


Some bacteria contain enzymes which are able to chemically modify many of the commonly used explosives. These bacteria have been used, particularly in the USA, to clean up land contaminated by munitions. The enzymes within the bacteria convert the explosives molecules to less toxic products, cleaning the contamination in the process. In this new process some of these enzymes have been purified from the bacteria and subjected to genetic modification. This modification has enabled the enzymes to adhere to the surface of an electrode sensor, where they remain active. There, they can trigger an electrical signal when activated by the presence of minute amounts of explosives molecules.

Chris Gwenin has been developing the project under the close guidance of Dr Maher Kalaji of the University’s Department of Chemistry and Prof Peter Williams of the School of Biological Sciences. He has been employed under a CASE Studentship, working with University spin-off company, Trwyn, who are now moving towards developing a prototype explosives detector to commercialize the technology.

“The project has moved forward at a tremendous pace, having reached a stage where we are able to patent our unique technology within 18 months of commencement,” said Dr Maher Kalaji. “The collaboration of expertise is what has led to the success. Crucial to the success of the project so far has been the unique combination of expertise from two discrete areas of molecular science. The success has also been aided by Chris Gwenin’s ability to develop new skills and expertise quickly,” commented Dr Maher Kalaji.

Commenting on the development, Professor Roy Evans, Vice-Chancellor of the University, said, “This is what is so exciting about research developments in higher education. The close collaboration of experts within different disciplines can take us to new ground. We have at Bangor a unique combination of expertise and I wish the company every success in taking this project forward commercial development.”

Elinor Elis-Williams | alfa
Further information:
http://www.bangor.ac.uk

More articles from Process Engineering:

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>