Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue researchers create device that detects mass of a single virus particle

05.02.2004


Researchers at Purdue University have developed a miniature device sensitive enough to detect a single virus particle, an advancement that could have many applications, including environmental-health monitoring and homeland security.


This photo, taken with a scanning electron microscope, shows a miniature "cantilever," a diving board-like beam of silicon that researchers at Purdue University have used to detect a single virus particle weighing about one-trillionth as much as a grain of rice. The work, funded by the National Institutes of Health, is aimed at developing advanced sensors capable of detecting airborne viruses, bacteria and other contaminants. Such sensors will have applications in areas including environmental health monitoring in hospitals and homeland security. (School of Electrical and Computer Engineering, Purdue University)



The device is a tiny "cantilever," a diving board-like beam of silicon that naturally vibrates at a specific frequency. When a virus particle weighing about one-trillionth as much as a grain of rice lands on the cantilever, it vibrates at a different frequency, which was measured by the Purdue researchers.

"Because this cantilever is very small, it is extremely sensitive to added mass, such as the addition of even a single virus particle," said Rashid Bashir, an associate professor of electrical and computer engineering and biomedical engineering.


Findings are detailed in a paper to appear next month in Applied Physics Letters, a journal published by the American Institute of Physics. The paper, which is likely to appear in the weekly journal’s March 8 issue, was written by doctoral student Amit Gupta, senior research scientist Demir Akin and Bashir, all in Purdue’s School of Electrical and Computer Engineering.

The work, funded by the National Institutes of Health, is aimed at developing advanced sensors capable of detecting airborne viruses, bacteria and other contaminants. Such sensors will have applications in areas including environmental-health monitoring in hospitals and homeland security.

"This work is particularly important because it demonstrates the sensitivity to detect a single virus particle," Gupta said. "Also, the device can allow us to detect whole, intact virus particles in real time. Currently available biosensing systems for deadly agents require that the DNA first be extracted from the agents, and then it is the DNA that is detected."

The next step will be to coat a cantilever with the antibodies for a specific virus, meaning only those virus particles would stick to the device. Coating the cantilevers with antibodies that attract certain viruses could make it possible to create detectors sensitive to specific pathogens.

"The long-term goal is to make a device that measures the capture of particles in real time as air flows over a detector," Bashir said.

Scientists are striving to create "lab-on-a-chip" technologies in which miniature sensors perform essentially the same functions now requiring bulky laboratory equipment, saving time, energy and materials.

Thousands of the cantilevers can be fabricated on a 1-square-centimeter chip, Akin said.

The Purdue researchers used the device to detect a particle of the vaccinia virus, which is a member of the Poxviridae family and forms the basis for the smallpox vaccine.

The cantilever is about one micron wide – or about one-hundredth the width of a human hair – 4 microns long and 30 nanometers thick. A nanometer is a billionth of a meter, or roughly the length of 10 hydrogen atoms strung together.

"This cantilever mechanically resonates at a natural frequency, just like anything that vibrates has a natural frequency," Bashir said. "What we do is measure the natural frequency of the cantilever, which is a function of its mass. As you increase the mass, the frequency decreases. And the way to increase the sensitivity is to make that starting mass very, very small."

A single vaccinia virus particle weighs about 9 femtograms, or quadrillionths of a gram.

"So, if a grain of rice weighs a couple of milligrams, one of these virus particles weighs about one-trillionth as much," Bashir said.

Because the cantilevers are mechanical parts measured primarily on the scale of microns, or millionths of a meter, they are called "micromechanical devices."

The researchers created the cantilever using the same technology used by the semiconductor industry to etch circuits in electronic chips. Silicon is deposited as a blanket onto the surface of a wafer and then formed into patterns during numerous steps, including chemical etching. In this case, a cantilever is formed instead of a circuit.

In addition to funding from NIH, facilities in Purdue’s Birck Nanotechnology Center were used to carry out the experiments.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Rashid Bashir, (765) 496-6229, bashir@ecn.purdue.edu
Amit Gupta, agupta@shay.ecn.purdue.edu
Demir Akin, da@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/2004/040204.Bashir.virus.html

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>