Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue researchers create device that detects mass of a single virus particle

05.02.2004


Researchers at Purdue University have developed a miniature device sensitive enough to detect a single virus particle, an advancement that could have many applications, including environmental-health monitoring and homeland security.


This photo, taken with a scanning electron microscope, shows a miniature "cantilever," a diving board-like beam of silicon that researchers at Purdue University have used to detect a single virus particle weighing about one-trillionth as much as a grain of rice. The work, funded by the National Institutes of Health, is aimed at developing advanced sensors capable of detecting airborne viruses, bacteria and other contaminants. Such sensors will have applications in areas including environmental health monitoring in hospitals and homeland security. (School of Electrical and Computer Engineering, Purdue University)



The device is a tiny "cantilever," a diving board-like beam of silicon that naturally vibrates at a specific frequency. When a virus particle weighing about one-trillionth as much as a grain of rice lands on the cantilever, it vibrates at a different frequency, which was measured by the Purdue researchers.

"Because this cantilever is very small, it is extremely sensitive to added mass, such as the addition of even a single virus particle," said Rashid Bashir, an associate professor of electrical and computer engineering and biomedical engineering.


Findings are detailed in a paper to appear next month in Applied Physics Letters, a journal published by the American Institute of Physics. The paper, which is likely to appear in the weekly journal’s March 8 issue, was written by doctoral student Amit Gupta, senior research scientist Demir Akin and Bashir, all in Purdue’s School of Electrical and Computer Engineering.

The work, funded by the National Institutes of Health, is aimed at developing advanced sensors capable of detecting airborne viruses, bacteria and other contaminants. Such sensors will have applications in areas including environmental-health monitoring in hospitals and homeland security.

"This work is particularly important because it demonstrates the sensitivity to detect a single virus particle," Gupta said. "Also, the device can allow us to detect whole, intact virus particles in real time. Currently available biosensing systems for deadly agents require that the DNA first be extracted from the agents, and then it is the DNA that is detected."

The next step will be to coat a cantilever with the antibodies for a specific virus, meaning only those virus particles would stick to the device. Coating the cantilevers with antibodies that attract certain viruses could make it possible to create detectors sensitive to specific pathogens.

"The long-term goal is to make a device that measures the capture of particles in real time as air flows over a detector," Bashir said.

Scientists are striving to create "lab-on-a-chip" technologies in which miniature sensors perform essentially the same functions now requiring bulky laboratory equipment, saving time, energy and materials.

Thousands of the cantilevers can be fabricated on a 1-square-centimeter chip, Akin said.

The Purdue researchers used the device to detect a particle of the vaccinia virus, which is a member of the Poxviridae family and forms the basis for the smallpox vaccine.

The cantilever is about one micron wide – or about one-hundredth the width of a human hair – 4 microns long and 30 nanometers thick. A nanometer is a billionth of a meter, or roughly the length of 10 hydrogen atoms strung together.

"This cantilever mechanically resonates at a natural frequency, just like anything that vibrates has a natural frequency," Bashir said. "What we do is measure the natural frequency of the cantilever, which is a function of its mass. As you increase the mass, the frequency decreases. And the way to increase the sensitivity is to make that starting mass very, very small."

A single vaccinia virus particle weighs about 9 femtograms, or quadrillionths of a gram.

"So, if a grain of rice weighs a couple of milligrams, one of these virus particles weighs about one-trillionth as much," Bashir said.

Because the cantilevers are mechanical parts measured primarily on the scale of microns, or millionths of a meter, they are called "micromechanical devices."

The researchers created the cantilever using the same technology used by the semiconductor industry to etch circuits in electronic chips. Silicon is deposited as a blanket onto the surface of a wafer and then formed into patterns during numerous steps, including chemical etching. In this case, a cantilever is formed instead of a circuit.

In addition to funding from NIH, facilities in Purdue’s Birck Nanotechnology Center were used to carry out the experiments.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Rashid Bashir, (765) 496-6229, bashir@ecn.purdue.edu
Amit Gupta, agupta@shay.ecn.purdue.edu
Demir Akin, da@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/2004/040204.Bashir.virus.html

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>