Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoruler a promising line of work

03.02.2004


An MIT device that makes the world’s most precise rulers—with “ticks” only a few hundred billionths of a meter apart—could impact fields from the manufacture of computer chips to space physics.


MIT’s Nanoruler was used to create parallel lines and spaces only 400 billionths of a meter apart (the diameter of a human hair is about 250 times larger) across this silicon wafer. The wafer is 12 inches in diameter.
PHOTO COURTESY / RALF HEILMANN



The Nanoruler is 10 to 1,000 times faster and more precise than other methods for patterning parallel lines and spaces (known collectively as gratings) across large surfaces more than 12 inches in diameter. Such large surfaces are key to a number of applications involving gratings, such as larger wafers for the production of computer chips and higher-resolution space telescopes.

“Patterning gratings with precise control across large areas has bedeviled labs around the world for a long time, despite great efforts,” said Mark L. Schattenburg (Ph.D. 1984), leader of the team and director of MIT’s Space Nanotechnology Laboratory in the Center for Space Research (CSR).


The Nanoruler can pattern gratings of lines and spaces separated by only a few hundred nanometers, or billionths of a meter, across a surface 300 millimeters in diameter. It does so with a precision of less than one nanometer. “That is the equivalent of shooting a target the size of a nickel in Manhattan all the way from San Francisco,” said Carl G. Chen (Ph.D. 2003), one of Schattenburg’s colleagues.

The researchers reported the results of initial trials of the Nanoruler in the November-December issue of the Journal of Vacuum Science and Technology B. In addition to Schattenburg and Chen, they include Paul T. Konkola (Ph.D. 2003) and CSR research scientist Ralf K. Heilmann. The team also received significant technical assistance from Robert Fleming of the CSR sponsored research technical staff.

The Nanoruler continues a line of research in advanced grating fabrication technology initiated at MIT in the late 1940s. Gratings are of particular interest to scientists and engineers because, among other things, they allow the analysis of light.

When the distance between one line and its neighbor, or period, is comparable to the wavelength of light, a phenomenon called diffraction occurs. Essentially the grating spreads the light into a spectrum, much as a prism spreads light into its colors. That spectrum, in turn, can be analyzed for information about the source.

For example, one such grating is key to NASA’s Chandra X-ray Observatory. The High Energy Transmission Grating, also developed by Schattenburg’s lab at MIT, spreads the X-rays from Chandra’s mirrors into a spectrum that can then be “read” like a kind of cosmic bar code. From there, scientists can deduce the chemical composition and temperature of the source (such as the corona of a star).

BUILDING A BETTER RULER

Schattenburg began the Nanoruler project because he wanted to create a better ruler for the semiconductor industry. “Today’s advanced computer chips are packed with millions of transistors,” he said. “Increasingly, however, it becomes a challenge to stuff more and more of these ever-shrinking features into an area no larger than a thumbnail.”

What Schattenburg wanted, in essence, was an extremely well-made ruler whose ticks are spaced not millimeters but nanometers apart, and whose size was comparable to the largest commercial silicon wafers. “If such a ruler could be created, it would help chip makers do a much better job of laying down the Lilliputian circuitry,” he said.

The Nanoruler does the trick by combining two conventional methods to create gratings: mechanical ruling and interference lithography. Mechanical ruling essentially involves dragging a very sharp tool—almost always a diamond point—across the surface to form the sets of lines and spaces. Among other drawbacks, however, it is time-consuming.

In interference lithography, two beams of light interfere with each other to produce interference “fringes,” or parallel planes of high and low light intensity. These fringes can then be recorded in the surface as lines and spaces, using the same techniques common to the patterning of miniscule designs on computer chips. Interference lithography is much faster than mechanical ruling since all the grooves are formed simultaneously in a single exposure.

The Nanoruler essentially moves the surface to be patterned on a stage as a laser creates the interference fringes that in turn become the lines and spaces. “While other tools can make gratings with smaller periods, none is as fast or as accurate as the Nanoruler,” Schattenburg said.
The project, which took five years, has had its share of trials and tribulations, Chen recalls. For example, toward the end he was stuck in Beijing for six months due to a visa delay. During that time he was able to work out some of the fundamental physics validating the Nanoruler concept.

“The experience of building the Nanoruler from scratch has been immensely rewarding,” he concluded.

NASA and DARPA sponsored the research. The Nanoruler is patent-pending. For more information, go to http://snl.mit.edu.

Elizabeth A. Thomson | MIT
Further information:
http://web.mit.edu/newsoffice/tt/2004/jan28/nanoruler.html
http://snl.mit.edu

More articles from Process Engineering:

nachricht Fraunhofer researchers develop measuring system for ZF factory in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>