Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New USC process offers faster, cheaper 3D ’printouts’

25.11.2003



Desktop manufacturing for home desks seen

A University of Southern California inventor has created a machine that can produce 3-dimensional "printouts" in plastic and even metal more quickly and cheaply than widely-used existing systems.

The new machine is a significant improvement on the laser sintering machines now widely used around the world to build complex 3D forms from computer files, according to its creator, Professor Behrokh Khoshnevis of the USC School of Engineering’s Daniel J. Epstein department of Industrial and Systems Engineering.



One patent has been granted and others are pending on the process, which may eventually put 3D object-making within reach of home offices.

Both traditional laser sintering and Dr. Khoshnevis’ "Selective Inhibition of Sintering" (SIS) process start with CAD ("computer aided design) three-dimensional form creation software.

The three-dimensional shapes visualized in the computer are re-visualized as stacks of very thin virtual layers. Then, each virtual layer is transformed into a real one.

Sintering machines build up objects by spreading a less- than-1 millimeter thick layer of powdered plastic or other material in a work area, and then melting ("sintering") selected areas, guided by the computer pattern. The process is repeated multiple times, with unmelted powder shaken off or blown away at the end of the process.

The result is to gradually build up complex forms, layer by layer. Such structures as free rolling balls inside of cages, for example, can easily be made.

The objects created were once almost exclusively used as molds or prototypes for die-casting, stamping or other traditional mass-production processes, and this role gave the name "rapid prototyping" to such processes. But with the increasing sophistication of techniques, some companies now use R-P processes - and particularly laser sintering -- for what is now called "direct manufacturing" or "desktop manufacturing" of final products.

Existing machines use a moving laser beam traveling over the work area to do the melting. SIS, for "Selective Inhibition Sintering" instead automatically treats some of the powder applied to resist bonding with adjacent particles under heat, and then exposes the entire piece to uniform, high-intensity heat. Untreated areas of powder sinter. Treated areas do not.

Various anti-sintering materials can be used, including salt water.

Khoshnevis says the SIS process has several advantages over laser machines. The lasers and scanners used in such machines are extremely expensive (up to $100,000 each), short-lived, and energy intensive, he notes, while the heat source for an SIS can be a low- tech gas flame, or an inexpensive electrical heater filament. The cheap, high heat possible with the SIS process makes the use of metals as well as plastics feasible.

Finally, because lasers have to scan out the entire work area, turning on and off to melt the needed areas, they are intrinsically slower in building up pieces, with large, complicated pieces requiring many hours, or even days. The SIS machine can complete a layer in as little as 15 seconds.

The advantages of the process make it possible to see a wider range of use for such machines. "Down the line," says Dr. Khoshnevis, "home offices may have them, right alongside the printer." Shops may have similar, heavier duty units, he said, filling work niches now held by lathes and milling machines.

Khoshnevis now has a working prototype machine, the performance of which he has demonstrated at various conferences.


Khoshnevis’ research was supported by a grant from the National Science Foundation.

Behrokh Khoshnevis Web site http://www-rcf.usc.edu/~khoshnev/

Eric Mankin | EurekAlert!
Further information:
http://www.usc.edu/
http://www-rcf.usc.edu/~khoshnev/

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>