Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New USC process offers faster, cheaper 3D ’printouts’

25.11.2003



Desktop manufacturing for home desks seen

A University of Southern California inventor has created a machine that can produce 3-dimensional "printouts" in plastic and even metal more quickly and cheaply than widely-used existing systems.

The new machine is a significant improvement on the laser sintering machines now widely used around the world to build complex 3D forms from computer files, according to its creator, Professor Behrokh Khoshnevis of the USC School of Engineering’s Daniel J. Epstein department of Industrial and Systems Engineering.



One patent has been granted and others are pending on the process, which may eventually put 3D object-making within reach of home offices.

Both traditional laser sintering and Dr. Khoshnevis’ "Selective Inhibition of Sintering" (SIS) process start with CAD ("computer aided design) three-dimensional form creation software.

The three-dimensional shapes visualized in the computer are re-visualized as stacks of very thin virtual layers. Then, each virtual layer is transformed into a real one.

Sintering machines build up objects by spreading a less- than-1 millimeter thick layer of powdered plastic or other material in a work area, and then melting ("sintering") selected areas, guided by the computer pattern. The process is repeated multiple times, with unmelted powder shaken off or blown away at the end of the process.

The result is to gradually build up complex forms, layer by layer. Such structures as free rolling balls inside of cages, for example, can easily be made.

The objects created were once almost exclusively used as molds or prototypes for die-casting, stamping or other traditional mass-production processes, and this role gave the name "rapid prototyping" to such processes. But with the increasing sophistication of techniques, some companies now use R-P processes - and particularly laser sintering -- for what is now called "direct manufacturing" or "desktop manufacturing" of final products.

Existing machines use a moving laser beam traveling over the work area to do the melting. SIS, for "Selective Inhibition Sintering" instead automatically treats some of the powder applied to resist bonding with adjacent particles under heat, and then exposes the entire piece to uniform, high-intensity heat. Untreated areas of powder sinter. Treated areas do not.

Various anti-sintering materials can be used, including salt water.

Khoshnevis says the SIS process has several advantages over laser machines. The lasers and scanners used in such machines are extremely expensive (up to $100,000 each), short-lived, and energy intensive, he notes, while the heat source for an SIS can be a low- tech gas flame, or an inexpensive electrical heater filament. The cheap, high heat possible with the SIS process makes the use of metals as well as plastics feasible.

Finally, because lasers have to scan out the entire work area, turning on and off to melt the needed areas, they are intrinsically slower in building up pieces, with large, complicated pieces requiring many hours, or even days. The SIS machine can complete a layer in as little as 15 seconds.

The advantages of the process make it possible to see a wider range of use for such machines. "Down the line," says Dr. Khoshnevis, "home offices may have them, right alongside the printer." Shops may have similar, heavier duty units, he said, filling work niches now held by lathes and milling machines.

Khoshnevis now has a working prototype machine, the performance of which he has demonstrated at various conferences.


Khoshnevis’ research was supported by a grant from the National Science Foundation.

Behrokh Khoshnevis Web site http://www-rcf.usc.edu/~khoshnev/

Eric Mankin | EurekAlert!
Further information:
http://www.usc.edu/
http://www-rcf.usc.edu/~khoshnev/

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

NASA Protects its super heroes from space weather

17.08.2017 | Physics and Astronomy

Spray-on electric rainbows: Making safer electrochromic inks

17.08.2017 | Materials Sciences

Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>