Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Dog-on-a-chip’ could replace drug-sniffing canines

30.10.2003


Police dogs across the country could soon be out of work, replaced by an electronic "dog-on-a-chip" that sniffs out cocaine and other narcotics. Scientists at Georgia Tech have created a new detection tool that is portable, inexpensive, and doesn’t require feeding or grooming. They say it is superior to previous "electronic noses" designed for this purpose.



The report will appear in the Nov. 15 edition of Analytical Chemistry, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.

"Our technology provides a hand-held sensing device capable of real-time detection, reducing the time between drug seizure and laboratory analysis," says Desmond Stubbs, a doctoral candidate in chemistry working under the direction of William Hunt, Ph.D., a professor of electrical engineering at Georgia Tech in Atlanta.


The sensor, which performed well in the lab and in a field test with the Georgia Bureau of Investigation, is "an elegant fusion of biotechnology and microelectronics," according to Hunt. This combination of disciplines makes the sensor superior to previous "electronic noses." The U.S. government will spend more than $19 billion this year in the war on drugs, according to the Office of National Drug Policy. Police dogs are important tools in this battle; their highly developed olfactory systems can detect small molecules in the part-per-billion range.

But using dogs has its drawbacks. They require expensive handlers to train and care for them, and the seized drugs must still be sent to the lab for further analysis — adding trained technicians and costly lab equipment to the tab.

Plus, scientists still don’t know exactly what chemicals the dogs are sensing, allowing for significant variations from one dog to the next. Dogs also have trouble detecting specific drug targets in the presence of other odors, such as coffee grounds. "Unfortunately, the illicit drug traffickers are aware of this and invariably mask their product with different chemicals to evade authorities," Stubbs says.

The new device addresses all of these issues.

Two key features of any vapor-sensing tool are sensitivity and specificity. Sensitivity is the ability to detect very small amounts of a chemical. Specificity is the ability to differentiate a certain chemical from a group of many similar ones (e.g., cocaine from coffee grounds).

The dog-on-a-chip can sense cocaine at a few trillionths of a gram. This sensitivity is achieved through surface acoustic wave (SAW) electronics, a method of detecting a chemical by measuring the disturbance it causes in sound waves across a tiny quartz crystal. This is a fairly common analytical method, and it has been used in other electronic noses, but by itself it does not address the problem of specificity.

The new chip goes a step further by incorporating monoclonal antibodies — cloned copies of proteins called antibodies that the immune system produces to fight foreign invaders. The researchers used anti-benzoylecgonine (anti-BZE) in the device because it differs only slightly in structure from cocaine, allowing it to bind preferentially to that molecule.

The SAW sensor is coated with a thin layer of anti-BZE. When a vapor sample passes through, cocaine molecules attach to anti-BZE molecules, causing a disturbance in the sound waves on the quartz crystal that is detected as an electrical signal.

"We are the first group to use specific antibodies to differentiate similar sized molecules in a complex vapor sample," Hunt says. This gives the dog-on-a-chip an advantage over its canine competitors and other electronic devices. It will also be significantly cheaper and less time-consuming by removing many of the steps from the current detection protocol.

The new device was carefully calibrated in a laboratory setting, and then it was put to the test in the field. "In field tests conducted at the Georgia Bureau of Investigation, we were able to detect cocaine obtained during an actual drug seizure," Stubbs says. "By simply drawing the vapor through our prototype device, we got a positive detection in a matter of seconds."

The ability to detect and identify small, non-volatile molecules like cocaine based on their electronic vapor signature could also be used in airports and other locations to detect explosives and chemical warfare agents, according to the researchers.

The U.S. Customs Service and the Office of National Drug Control Policy (ONDCP) provided funding for this research.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>