Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Dog-on-a-chip’ could replace drug-sniffing canines

30.10.2003


Police dogs across the country could soon be out of work, replaced by an electronic "dog-on-a-chip" that sniffs out cocaine and other narcotics. Scientists at Georgia Tech have created a new detection tool that is portable, inexpensive, and doesn’t require feeding or grooming. They say it is superior to previous "electronic noses" designed for this purpose.



The report will appear in the Nov. 15 edition of Analytical Chemistry, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.

"Our technology provides a hand-held sensing device capable of real-time detection, reducing the time between drug seizure and laboratory analysis," says Desmond Stubbs, a doctoral candidate in chemistry working under the direction of William Hunt, Ph.D., a professor of electrical engineering at Georgia Tech in Atlanta.


The sensor, which performed well in the lab and in a field test with the Georgia Bureau of Investigation, is "an elegant fusion of biotechnology and microelectronics," according to Hunt. This combination of disciplines makes the sensor superior to previous "electronic noses." The U.S. government will spend more than $19 billion this year in the war on drugs, according to the Office of National Drug Policy. Police dogs are important tools in this battle; their highly developed olfactory systems can detect small molecules in the part-per-billion range.

But using dogs has its drawbacks. They require expensive handlers to train and care for them, and the seized drugs must still be sent to the lab for further analysis — adding trained technicians and costly lab equipment to the tab.

Plus, scientists still don’t know exactly what chemicals the dogs are sensing, allowing for significant variations from one dog to the next. Dogs also have trouble detecting specific drug targets in the presence of other odors, such as coffee grounds. "Unfortunately, the illicit drug traffickers are aware of this and invariably mask their product with different chemicals to evade authorities," Stubbs says.

The new device addresses all of these issues.

Two key features of any vapor-sensing tool are sensitivity and specificity. Sensitivity is the ability to detect very small amounts of a chemical. Specificity is the ability to differentiate a certain chemical from a group of many similar ones (e.g., cocaine from coffee grounds).

The dog-on-a-chip can sense cocaine at a few trillionths of a gram. This sensitivity is achieved through surface acoustic wave (SAW) electronics, a method of detecting a chemical by measuring the disturbance it causes in sound waves across a tiny quartz crystal. This is a fairly common analytical method, and it has been used in other electronic noses, but by itself it does not address the problem of specificity.

The new chip goes a step further by incorporating monoclonal antibodies — cloned copies of proteins called antibodies that the immune system produces to fight foreign invaders. The researchers used anti-benzoylecgonine (anti-BZE) in the device because it differs only slightly in structure from cocaine, allowing it to bind preferentially to that molecule.

The SAW sensor is coated with a thin layer of anti-BZE. When a vapor sample passes through, cocaine molecules attach to anti-BZE molecules, causing a disturbance in the sound waves on the quartz crystal that is detected as an electrical signal.

"We are the first group to use specific antibodies to differentiate similar sized molecules in a complex vapor sample," Hunt says. This gives the dog-on-a-chip an advantage over its canine competitors and other electronic devices. It will also be significantly cheaper and less time-consuming by removing many of the steps from the current detection protocol.

The new device was carefully calibrated in a laboratory setting, and then it was put to the test in the field. "In field tests conducted at the Georgia Bureau of Investigation, we were able to detect cocaine obtained during an actual drug seizure," Stubbs says. "By simply drawing the vapor through our prototype device, we got a positive detection in a matter of seconds."

The ability to detect and identify small, non-volatile molecules like cocaine based on their electronic vapor signature could also be used in airports and other locations to detect explosives and chemical warfare agents, according to the researchers.

The U.S. Customs Service and the Office of National Drug Control Policy (ONDCP) provided funding for this research.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>