Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Dog-on-a-chip’ could replace drug-sniffing canines

30.10.2003


Police dogs across the country could soon be out of work, replaced by an electronic "dog-on-a-chip" that sniffs out cocaine and other narcotics. Scientists at Georgia Tech have created a new detection tool that is portable, inexpensive, and doesn’t require feeding or grooming. They say it is superior to previous "electronic noses" designed for this purpose.



The report will appear in the Nov. 15 edition of Analytical Chemistry, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.

"Our technology provides a hand-held sensing device capable of real-time detection, reducing the time between drug seizure and laboratory analysis," says Desmond Stubbs, a doctoral candidate in chemistry working under the direction of William Hunt, Ph.D., a professor of electrical engineering at Georgia Tech in Atlanta.


The sensor, which performed well in the lab and in a field test with the Georgia Bureau of Investigation, is "an elegant fusion of biotechnology and microelectronics," according to Hunt. This combination of disciplines makes the sensor superior to previous "electronic noses." The U.S. government will spend more than $19 billion this year in the war on drugs, according to the Office of National Drug Policy. Police dogs are important tools in this battle; their highly developed olfactory systems can detect small molecules in the part-per-billion range.

But using dogs has its drawbacks. They require expensive handlers to train and care for them, and the seized drugs must still be sent to the lab for further analysis — adding trained technicians and costly lab equipment to the tab.

Plus, scientists still don’t know exactly what chemicals the dogs are sensing, allowing for significant variations from one dog to the next. Dogs also have trouble detecting specific drug targets in the presence of other odors, such as coffee grounds. "Unfortunately, the illicit drug traffickers are aware of this and invariably mask their product with different chemicals to evade authorities," Stubbs says.

The new device addresses all of these issues.

Two key features of any vapor-sensing tool are sensitivity and specificity. Sensitivity is the ability to detect very small amounts of a chemical. Specificity is the ability to differentiate a certain chemical from a group of many similar ones (e.g., cocaine from coffee grounds).

The dog-on-a-chip can sense cocaine at a few trillionths of a gram. This sensitivity is achieved through surface acoustic wave (SAW) electronics, a method of detecting a chemical by measuring the disturbance it causes in sound waves across a tiny quartz crystal. This is a fairly common analytical method, and it has been used in other electronic noses, but by itself it does not address the problem of specificity.

The new chip goes a step further by incorporating monoclonal antibodies — cloned copies of proteins called antibodies that the immune system produces to fight foreign invaders. The researchers used anti-benzoylecgonine (anti-BZE) in the device because it differs only slightly in structure from cocaine, allowing it to bind preferentially to that molecule.

The SAW sensor is coated with a thin layer of anti-BZE. When a vapor sample passes through, cocaine molecules attach to anti-BZE molecules, causing a disturbance in the sound waves on the quartz crystal that is detected as an electrical signal.

"We are the first group to use specific antibodies to differentiate similar sized molecules in a complex vapor sample," Hunt says. This gives the dog-on-a-chip an advantage over its canine competitors and other electronic devices. It will also be significantly cheaper and less time-consuming by removing many of the steps from the current detection protocol.

The new device was carefully calibrated in a laboratory setting, and then it was put to the test in the field. "In field tests conducted at the Georgia Bureau of Investigation, we were able to detect cocaine obtained during an actual drug seizure," Stubbs says. "By simply drawing the vapor through our prototype device, we got a positive detection in a matter of seconds."

The ability to detect and identify small, non-volatile molecules like cocaine based on their electronic vapor signature could also be used in airports and other locations to detect explosives and chemical warfare agents, according to the researchers.

The U.S. Customs Service and the Office of National Drug Control Policy (ONDCP) provided funding for this research.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>