Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart blending technique could change way plastics made

23.09.2003


A new "smart blending" process developed by Clemson University researchers could change the way plastics are made and improve their performance. Early results published in August’s Polymer Engineering and Science have already drawn interest from European and United States plastics manufacturers.



Dave Zumbrunnen, who heads the Clemson research team, said smart blending could bring plastics production into the 21st century. "Most people would be surprised to learn that many plastics are not optimized for their intended use due to limitations of existing manufacturing equipment," he said. With a smart-blending machine, however, engineers can optimize the material for maximum effectiveness with only a few strokes on a computer keyboard.

Many plastics are mixtures of two or more plastics and additives. Smart blending arranges these plastics into functional internal shapes as small as 1/10,0000th the diameter of a hair.


That’s important because it’s those small-scale structures that determine the attributes, or properties, of the plastic or composite. The end result? Plastics that are tougher, electrically conductive, porous – whatever is needed for the particular end-product, but without expensive trial and error.

"Smart blending technology offers unprecedented control of internal structure development, said Zumbrunnen. He developed the process along with faculty and student researchers from Clemson’s Center for Advanced Engineering Fibers and Films.

Immediate applications could include improved food packaging films, personal hygiene products, light-interactive plastics and toughened plastics for automotive uses.

Smart blending could also be used to produce patterns for countertops and even better tasting breakfast cereals.

The Dow Chemical Co. is funding a smart blending study through the fibers and films center. "We are looking forward to the results and the further development of this technology," said Craig Dryzga, senior R&D leader in Dow’s Fabricated Products Department. Dow is headquartered in Midland, Mich.

Zumbrunnen’s research sponsors include industry representatives such as Dow, as well as the National Science Foundation, Defense Advanced Research Projects Agency and the National Textile Center.

Equipment manufacturers are interested in commercializing the technology. Zumbrunnen predicted that the first wave of smart-blended plastics could be on the market within a few years.

Zumbrunnen’s research is based on the work of Hassan Aref, who developed what’s known as the theory of chaotic advection. In a seminal 1980s paper, Aref showed that particles in a fluid can move chaotically in response to simple agitations. The chaotic motions cause fluidic regions to become stretched and folded, forming the layers on which Zumbrunnen has based his work.

Aref, now dean of Virginia Tech’s College of Engineering, has called Zumbrunnen’s work "attractive and ingenious."

Zumbrunnen’s work is a pivotal research initiative in Clemson’s fibers and films center. The National Science Foundation established the center as one of the nation’s elite Engineering Research Centers in 1998. It’s the only national Engineering Research Center to target fiber and film research.

"This technique could change the way we produce all polymer products – fibers, films and even injection-molded products," said the center’s director Dan Edie.

Zumbrunnen, a recipient of the Presidential Faculty Fellow Award from The White House and a recent participant in the National Academy of Engineering’s prestigious Frontiers of Engineering symposium, is Clemson’s Warren H. Owen-Duke Energy Professor of Mechanical Engineering.

Sandy Dees | Sandy Dees
Further information:
http://www.clemson.edu/

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>