Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NESTA radar hits water leaks

14.07.2003


What would you use to try and find an underground water leak, your ears or radar? Believe it or not the only way to find water leaks involves trying to hear the hiss of the leak through a device like a stethoscope. This antiquated system could soon be a thing of the past as a fast and full-proof method using radar is being developed thanks to an investment of £76,810 from NESTA (the National Endowment for Science, Technology & the Arts), the organisation that invests in UK creativity and innovation.



The StesT Leak Radar is the brainchild of Dr Mark Harper, who has 30 years’ experience in applied physics and geophysics. Cambridge company STesT (Structural Testing Technology) Ltd also includes Dr Martin Thompson, an engineer who has worked in the mining and energy industries since 1975, and John Sheppard, a mechanical engineer with 20 years’ experience.

The present method of finding leaks in water mains involves looking at suspected damage areas at night and narrowing down an area through acoustic detection of the hiss produced by the leak. It is finally pinpointed using the listening sticks – lengths of rod that act as stethoscopes. This final step is time consuming and error prone, with other noises often hindering the discovery of any leaks. It can easily be misled by hissing noises arising from valves, ferrules, and other obstacles to water flow.


The STesT Leak Radar aims to supplant this stage through utilising radar and control system technologies in a new and innovative way. When placed on the ground, the STesT system will provide an immediate response to whether there are any leaks beneath it. It is not misled by valve noise or other sounds.

NESTA funding, through the Invention & Innovation programme, will allow STesT Ltd to further develop a proof-of-concept prototype through building a portable miniaturised demonstrator to be used in market testing and in presenting to water companies. The technology being developed by STesT could have more far reaching applications. Its methods would be equally useful in the petrochemical industry where oil is transported great distances underground, and the system’s ability to penetrate solid bodies and detect very small movements could make it a valuable tool for searching for survivors after an earthquake. It could also have security applications, for example allowing police to determine whether a room is occupied before entering it.

Mark White, NESTA Invention and Innovation Director, said:
“NESTA is delighted to be involved in a project with such obvious social and commercial benefit. We are always on the look-out for innovative ideas for new products and services, willing to back them at the early stage that other funders seem to find difficult to handle.”

Joseph Meaney | alfa

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>