Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny bubbles are key to liquid-cooled system for future computers

14.04.2003


Issam Mudawar, a professor of mechanical engineering at Purdue University, demonstrates the liquid-cooling system he has developed for future computers. Within about three years, microprocessor chips are expected to generate four times the amount of heat as current chips, requiring innovative cooling systems to keep the chips from being damaged by heat. (Purdue News Service Photo/David Umberger)


Purdue University researchers have made a discovery that may lead to the development of an innovative liquid-cooling system for future computer chips, which are expected to generate four times more heat than today’s chips.

Researchers had thought that bubbles might block the circulation of liquid forced to flow through "microchannels" only three times the width of a human hair. Engineers also thought that small electric pumps might be needed to push liquid through the narrow channels, increasing the cost and complexity while decreasing the reliability of new cooling systems for computers.

Purdue researchers, however, have solved both of these potential engineering hurdles, developing a "pumpless" liquid-cooling system that removes nearly six times more heat than existing miniature pumpless liquid-cooling systems, said Issam Mudawar, a professor of mechanical engineering.



Liquid forced through microchannels forms smaller bubbles than expected, Mudawar said he was surprised to learn. Moreover, decreasing the diameter of the microchannels increased the cooling efficiency of the system by causing the liquid to form even smaller bubbles, which is contrary to the expected result.

Because the bubbles are much smaller than the diameter of the microchannels, they flow easily through the channels. The Purdue-developed system does not require a pump because the liquid circulates in a self-sustaining flow in a closed loop that carries heat away from a computer chip.

Findings about the new cooling system are detailed in a research paper appearing in the March issue of IEEE Transactions on Components and Packaging Technologies, published by the Institute of Electrical and Electronics Engineers. The paper was written by Mudawar and graduate student Swaraj Mukherjee.

Innovative cooling systems will be needed in about three years for personal computers expected to contain microprocessor chips that will generate four times more heat than chips in current computers. Whereas current high-performance chips generate about 75 watts per square centimeter, chips in the near future will generate more than 300 watts per square centimeter, Mudawar said.

"Any time you squeeze more circuitry into the same space, you are producing more heat per unit area and per unit volume," he said.

Today’s computers use fans and heat sinks containing fins to help cool circuitry. But this technology will not be efficient enough to remove the increasing heat generated by future chips, Mudawar said.

His research team created a liquid-cooling system that uses a closed loop of two vertical, parallel tubes containing a dielectric liquid – or a liquid that does not conduct electricity. The liquid flows through microchannels in a metal plate that is touching the chip. As liquid flows through the channels, it is heated by the chip and begins to boil, producing bubbles of vapor. Because the buoyant vapor bubbles are lighter than the liquid, they rise to the top of the tube, where they are cooled by a fan and condensed back into a liquid. The cool liquid then flows into the parallel tube and descends, creating a self-sustaining flow that eventually re-enters the microchannel plate and starts all over again.

"We were surprised to see that the dielectric liquid forms really miniature bubbles, so they slip through really fast," Mudawar said. "The bubbles don’t block the flow, as you would expect."

The researchers found that the system was 5.7 times better at removing heat than existing miniature pumpless liquid-cooling systems.

"This is only a starting point, and much better performance might be possible," Mudawar said.

Future research will focus on testing various designs to see which configurations work best.

"Now that we have a system that we know will work, we are going to test different geometries that will be beneficial to industry," said Mudawar, director of the Purdue University International Electronic Cooling Alliance. The alliance brings together researchers from industry, government agencies and Purdue to design cooling systems for applications ranging from personal computers to spacecraft.

The research was funded by the U.S. Department of Energy’s Office of Science.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Source: Issam Mudawar, (765) 494-5705, mudawar@ecn.purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030411.Mudawar.cooling.html
http://me.www.ecn.purdue.edu/ME/Fac_Staff/mudawar.whtml
http://www.ecn.purdue.edu/PUIECA/main.html

More articles from Process Engineering:

nachricht Innovative process for environmentally friendly manure treatment comes onto the market
03.05.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>