Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny bubbles are key to liquid-cooled system for future computers

14.04.2003


Issam Mudawar, a professor of mechanical engineering at Purdue University, demonstrates the liquid-cooling system he has developed for future computers. Within about three years, microprocessor chips are expected to generate four times the amount of heat as current chips, requiring innovative cooling systems to keep the chips from being damaged by heat. (Purdue News Service Photo/David Umberger)


Purdue University researchers have made a discovery that may lead to the development of an innovative liquid-cooling system for future computer chips, which are expected to generate four times more heat than today’s chips.

Researchers had thought that bubbles might block the circulation of liquid forced to flow through "microchannels" only three times the width of a human hair. Engineers also thought that small electric pumps might be needed to push liquid through the narrow channels, increasing the cost and complexity while decreasing the reliability of new cooling systems for computers.

Purdue researchers, however, have solved both of these potential engineering hurdles, developing a "pumpless" liquid-cooling system that removes nearly six times more heat than existing miniature pumpless liquid-cooling systems, said Issam Mudawar, a professor of mechanical engineering.



Liquid forced through microchannels forms smaller bubbles than expected, Mudawar said he was surprised to learn. Moreover, decreasing the diameter of the microchannels increased the cooling efficiency of the system by causing the liquid to form even smaller bubbles, which is contrary to the expected result.

Because the bubbles are much smaller than the diameter of the microchannels, they flow easily through the channels. The Purdue-developed system does not require a pump because the liquid circulates in a self-sustaining flow in a closed loop that carries heat away from a computer chip.

Findings about the new cooling system are detailed in a research paper appearing in the March issue of IEEE Transactions on Components and Packaging Technologies, published by the Institute of Electrical and Electronics Engineers. The paper was written by Mudawar and graduate student Swaraj Mukherjee.

Innovative cooling systems will be needed in about three years for personal computers expected to contain microprocessor chips that will generate four times more heat than chips in current computers. Whereas current high-performance chips generate about 75 watts per square centimeter, chips in the near future will generate more than 300 watts per square centimeter, Mudawar said.

"Any time you squeeze more circuitry into the same space, you are producing more heat per unit area and per unit volume," he said.

Today’s computers use fans and heat sinks containing fins to help cool circuitry. But this technology will not be efficient enough to remove the increasing heat generated by future chips, Mudawar said.

His research team created a liquid-cooling system that uses a closed loop of two vertical, parallel tubes containing a dielectric liquid – or a liquid that does not conduct electricity. The liquid flows through microchannels in a metal plate that is touching the chip. As liquid flows through the channels, it is heated by the chip and begins to boil, producing bubbles of vapor. Because the buoyant vapor bubbles are lighter than the liquid, they rise to the top of the tube, where they are cooled by a fan and condensed back into a liquid. The cool liquid then flows into the parallel tube and descends, creating a self-sustaining flow that eventually re-enters the microchannel plate and starts all over again.

"We were surprised to see that the dielectric liquid forms really miniature bubbles, so they slip through really fast," Mudawar said. "The bubbles don’t block the flow, as you would expect."

The researchers found that the system was 5.7 times better at removing heat than existing miniature pumpless liquid-cooling systems.

"This is only a starting point, and much better performance might be possible," Mudawar said.

Future research will focus on testing various designs to see which configurations work best.

"Now that we have a system that we know will work, we are going to test different geometries that will be beneficial to industry," said Mudawar, director of the Purdue University International Electronic Cooling Alliance. The alliance brings together researchers from industry, government agencies and Purdue to design cooling systems for applications ranging from personal computers to spacecraft.

The research was funded by the U.S. Department of Energy’s Office of Science.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Source: Issam Mudawar, (765) 494-5705, mudawar@ecn.purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030411.Mudawar.cooling.html
http://me.www.ecn.purdue.edu/ME/Fac_Staff/mudawar.whtml
http://www.ecn.purdue.edu/PUIECA/main.html

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>