Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny cell-based chemical detectors have homeland security potential

14.03.2003


A highly sensitive, inexpensive "lab-on-a-chip" that provides warning within seconds of even trace amounts of toxic chemicals in water was designed and demonstrated recently by National Institute of Standards and Technology (NIST) scientists and collaborators.



The prototype sensor system monitors the natural response of bacterial cells bound within the microscopic channels of a plastic microfluidics device--a miniaturized chemical and biochemical analysis system. In the presence of certain chemicals, the cells eject large amounts of potassium, which is detected with an optical sensor that changes color. The prototype was demonstrated as part of an early warning system for industrial pollutants that interfere with sewage treatment, but it also has potential homeland security applications.

Cell-based sensors are of great interest today because they can respond to a wide range of chemical toxins rapidly. NIST’s primary contributions to this project involve expertise in microfluidics technology, particularly aspects such as plastics processing. The new device has a novel configuration in which, through the use of lasers, tiny posts are constructed within the channels to act as a sieve and promote adhesion of the cells.


Although this type of chemical test could be performed in other formats, a microfluidics device is more sensitive because of the high surface to volume ratio, and also faster because of the close juxtaposition of chemicals and cells. In addition, it consumes less reagent and sample material and could be used in a distributed sensor network for real-time field testing. The device was designed in collaboration with scientists at Virginia Polytechnic Institute and State University (Blacksburg, Va.) and Veridian Pacific-Sierra Research (Charlottesville, Va.).


For more information, contact Laurie Locascio, 301-975-3130, laurie.locascio@nist.gov.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov/

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>