Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New coil to make magnetic resonance (MR) imaging easier

24.01.2003


Oxford University researchers have devised a novel coil design for magnetic resonance (MR) application, devised specifically for deep organ MR where sensitive imaging and spectroscopy have been previously difficult.



Deep organ magnetic resonance requires maximised sensitivity and magnetic field homogeneity over a relatively large field of view (FOV). However, it is difficult to maximise both sensitivity and magnetic field homogeneity simultaneously. The sensitivity can be maximised by reducing the coil volume, but this minimises the magnetic field homogeneity. Conversely, the magnetic field homogeneity can be maximised by increasing the coil volume, but this minimises sensitivity.

The conventional approach to addressing the problem of sensitivity and homogeneity balance utilises the Phased-Coil array. The Phased-Coil array consists of closely packed surface coils that offer both the sensitivity of a surface coil and the large FOV benefit of a volume coil. This approach, however, requires a separate RF transmitter coil and MR scanner with multiple receiver channels, thereby significantly increasing both the complexity and cost of use.


The Oxford researchers have addressed these problems by designing an RF coil that is appropriate for deep organ applications like cardiac MR without greatly increasing the complexity and cost of the MR scanner itself. The coil has been devised to increase the available ‘sweet spot’ of the coil to deep-lying regions of interest, facilitating imaging and spectroscopy of elements deep within the subject of interest. The coil can be used in MR scanners that are only equipped to use a single coil, and because the coil is suitable for both imaging and spectroscopy, the dual functionality makes its use more cost effective.

Isis Innovation, Oxford University’s technology transfer company, has filed a patent application for this technology and welcomes contact from companies interested in commercially developing this novel coil design in MR applications.

Jennifer Johnson | alfa
Further information:
http://www.isis-innovation.com/licensing/1104.html

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>