Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New coil to make magnetic resonance (MR) imaging easier

24.01.2003


Oxford University researchers have devised a novel coil design for magnetic resonance (MR) application, devised specifically for deep organ MR where sensitive imaging and spectroscopy have been previously difficult.



Deep organ magnetic resonance requires maximised sensitivity and magnetic field homogeneity over a relatively large field of view (FOV). However, it is difficult to maximise both sensitivity and magnetic field homogeneity simultaneously. The sensitivity can be maximised by reducing the coil volume, but this minimises the magnetic field homogeneity. Conversely, the magnetic field homogeneity can be maximised by increasing the coil volume, but this minimises sensitivity.

The conventional approach to addressing the problem of sensitivity and homogeneity balance utilises the Phased-Coil array. The Phased-Coil array consists of closely packed surface coils that offer both the sensitivity of a surface coil and the large FOV benefit of a volume coil. This approach, however, requires a separate RF transmitter coil and MR scanner with multiple receiver channels, thereby significantly increasing both the complexity and cost of use.


The Oxford researchers have addressed these problems by designing an RF coil that is appropriate for deep organ applications like cardiac MR without greatly increasing the complexity and cost of the MR scanner itself. The coil has been devised to increase the available ‘sweet spot’ of the coil to deep-lying regions of interest, facilitating imaging and spectroscopy of elements deep within the subject of interest. The coil can be used in MR scanners that are only equipped to use a single coil, and because the coil is suitable for both imaging and spectroscopy, the dual functionality makes its use more cost effective.

Isis Innovation, Oxford University’s technology transfer company, has filed a patent application for this technology and welcomes contact from companies interested in commercially developing this novel coil design in MR applications.

Jennifer Johnson | alfa
Further information:
http://www.isis-innovation.com/licensing/1104.html

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>