Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New coil to make magnetic resonance (MR) imaging easier

24.01.2003


Oxford University researchers have devised a novel coil design for magnetic resonance (MR) application, devised specifically for deep organ MR where sensitive imaging and spectroscopy have been previously difficult.



Deep organ magnetic resonance requires maximised sensitivity and magnetic field homogeneity over a relatively large field of view (FOV). However, it is difficult to maximise both sensitivity and magnetic field homogeneity simultaneously. The sensitivity can be maximised by reducing the coil volume, but this minimises the magnetic field homogeneity. Conversely, the magnetic field homogeneity can be maximised by increasing the coil volume, but this minimises sensitivity.

The conventional approach to addressing the problem of sensitivity and homogeneity balance utilises the Phased-Coil array. The Phased-Coil array consists of closely packed surface coils that offer both the sensitivity of a surface coil and the large FOV benefit of a volume coil. This approach, however, requires a separate RF transmitter coil and MR scanner with multiple receiver channels, thereby significantly increasing both the complexity and cost of use.


The Oxford researchers have addressed these problems by designing an RF coil that is appropriate for deep organ applications like cardiac MR without greatly increasing the complexity and cost of the MR scanner itself. The coil has been devised to increase the available ‘sweet spot’ of the coil to deep-lying regions of interest, facilitating imaging and spectroscopy of elements deep within the subject of interest. The coil can be used in MR scanners that are only equipped to use a single coil, and because the coil is suitable for both imaging and spectroscopy, the dual functionality makes its use more cost effective.

Isis Innovation, Oxford University’s technology transfer company, has filed a patent application for this technology and welcomes contact from companies interested in commercially developing this novel coil design in MR applications.

Jennifer Johnson | alfa
Further information:
http://www.isis-innovation.com/licensing/1104.html

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>