Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technology For Aluminium Laser Welding

02.12.2002


Russian scientists of the Kovrov State Technology Academy have proposed a new technology for aluminium alloy welding based on using of two lasers. The first laser removes the oxide film by small portions from the surface of welded components, and the second laser executes the welding. Although the first phase lasts for about one millionth of a second, it is very important, since the refractory oxide film deteriorates the welding strength. The new method is also characterized by one more benefit: the place the juncture is covered with a thin film of molten metal increasing the efficiency of laser beam. The film also retains tiny particles, which erupt from the metal in the course of welding and increases the maximal welding depth.



The new laser device consists of two modified lasers, the mirror system and the lens, which focuses the emission on the welding area. The radius of laser beam which performs welding makes 0.3 millimeters. The welding rate was equal to 30 millimeters per minute.

The scientists have experimentally compared the new welding technology with the common one, where only one laser is used. The experiments have proved that a new method provides for twice or thrice higher depth of welding. In addition, the quality of seams (judging by the so-called ’’’’porosity of weld’’’’) increases twice, thus improving the product strength.


The issue of non-ferrous metals laser welding is rather critical. This is due to the fact that utilization of light alloys of aluminium is becoming more and more profitable. Therefore, ferrous metal is gradually replaced by non-ferrous one. However, the quality of aluminium welding by laser has not been satisfactory so far. Probably, the new technology would solve the problem.

By now, more than 100 thousand laser application areas are known. The Russian scientists appear to have discovered one more area.

Mr. Andrey Siver | alfa
Further information:
http://www.informnauka.ru/eng/2002/2002-11-29-02_266_e.htm

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>