Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FaME38: Helping engineers studying critical materials

27.11.2002


Airplane wings or railway rails are examples of mechanical components constantly submitted to stress. They consist of materials (metal alloys) with properties that may change under stress. To understand and improve such materials, it is essential to observe them on a microscopic scale. The ESRF and the ILL make today a step forward into looking deep inside engineering components. Thanks to the use of complementary neutron and synchrotron X-ray beams, these two centres offer a unique tool to measure strains, texture and microstructure of critical components that are submitted to large stresses. Together with seven British academic institutions, these two research organizations have created FaME38 (Facility for Materials Engineering), a € 5 M joint engineering support centre based in Grenoble inaugurated today.



The first pre-standard for the measurement of residual stresses using neutrons was drafted in 2001. This pre-standard is now being developed into a new European and international standard. FaME38 will enable the ILL and the ESRF to develop the hardware and software of their strain imaging facilities and provide a residual stress measuring service to the new standard. The facilities are building new strain image equipment to allow studies of engineering components up to 1000kg within the next few years.
FaME38 will act as the interface between research engineers working to improve the characteristics of modern materials and scientists with expertise in analytical methods using neutron and synchrotron X-ray techniques. In this context, it will have a “Knowledge and Training Centre” to provide technical and scientific know-how. Users will be helped to plan and prepare experiments. They will be assisted with data collection, on-line processing and analysis.

FaME38 will also provide engineering users with a user-friendly “Technical Centre”, equipped with a scanner, static thermo-mechanical loading facilities, microstructural characterisation facilities as well as a data analysis suite providing fast analysis. Components with complex shapes will be mounted and positioned with high precision. The new strain scanners can be considered to be the engineering equivalent of the body-scanners now routinely used in medicine. The neutron and X-ray facilities give very precise information about the defects materials may have.



The FaME38 facilities will be able to offer real-time dynamic experiments. Engineers will be able to observe the structure of materials at the same time as they apply stress to them. These developments will allow the engineers to better understand the response of materials to stress in a short period of time.



Montserrat Capellas | alfa
Further information:
http://www.ill.fr/FaME38

More articles from Process Engineering:

nachricht CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass
25.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>