Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NIST micro-positioner may help send messages from the stars


Phoning home from 93 billion miles away--only E.T. and other science fiction characters can do that. But with the help of National Institute of Standards and Technology (NIST) know-how, reality soon may catch up with imagination.

Conceptual designs for a "realistic interstellar explorer," or RISE -- a highly autonomous craft that would travel far beyond this solar system to collect scientific data -- call for a laser-based communications link to Earth that relies in part on a recent NIST invention called a Parallel Cantilever Bi-axial Micro-Positioner. The prototype NIST device acts as a mechanical filter that generates very straight lines by screening out all other motions. Primarily intended for use in the delicate assembly and alignment of optoelectronic devices and applications in micro- and nano-manufacturing, the micro-positioner in a different application offers a promising means for meeting the demanding range, mass and power requirements for the RISE.

In its interstellar role, the micro-positioner would be used to position a lens that steers a laser beam communication link toward Earth. The beam must be pointed precisely because the distances would be, well, astronomical. The RISE is envisioned as having a range up to 1,000 Astronomical Units (AU)--1,000 times the distance from the Earth to the sun, or 93 billion miles.

A recent paper by researchers at NIST and Johns Hopkins University Applied Physics Laboratory (which is designing the RISE) concluded that an optical communications downlink spanning 1,000 AU is technically feasible in the next decade if these new technologies can be sufficiently refined. For example, the current range of the NIST micro-positioner would have to be improved by a factor of nearly 10.

Laura Ost | EurekAlert!
Further information:

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>