Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New way to make dense complex-shaped ceramics at lower cost


A new way researchers have developed to make dense ceramics in complex shapes could lead to light, tough, and hard ceramic parts at lower cost.

The recently patented technique, called "displacive compensation of porosity," or DCP, uses a chemical reaction between molten metal and a porous ceramic to generate a new composite material. The technique fills the tiny pores inside the ceramic with additional ceramic material. The resulting super-dense part retains the shape of the original ceramic.

The technology could be used to produce rocket nozzles, body armor, and manufacturing tools, explained inventor Ken Sandhage, professor of materials science and engineering at Ohio State University. His partner on the patent, former student Pragati Kumar, now works for Novellus Systems Inc., a maker of semiconductor manufacturing equipment in San Jose.

Manufacturers could make hard heat-resistant ceramics cheaper and easier with DCP, since it works at lower temperatures than conventional methods and eliminates the need for post-process machining, Sandhage said. The first step of the process -- creating a porous ceramic shape, or preform -- is well known in industry.

"The same way you form a teacup, you can make one of our preforms," Sandhage said.

Today’s strongest body armor relies on ceramics, because these materials are lighter and harder than metal. For instance, both military armor and commercially available bulletproof vests can contain ceramic plates wedged between layers of fabric.

Sandhage said manufacturers could create thinner, lighter, and stronger body armor if they used very hard ceramics, such as boron carbide, but such materials are difficult to mold into body-friendly shapes.

With DCP, Sandhage and his students were able to create composites containing some of the world’s hardest materials, including boron carbide, zirconium carbide, hafnium carbide, titanium carbide, and zirconium diboride.

In tests, the Ohio State engineers molded a curved object out of tungsten carbide, a fine gray ceramic powder used in machine tools and abrasives. Then they melted a zirconium-copper alloy and let the molten metal seep into the powder.

"The tungsten carbide sucked up the liquid metal like a sponge sucks up water," Sandhage said.

At temperatures of 1,200 C to 1,300 C (2,190 F to 2,370 F), the metal and ceramic reacted with each other chemically inside the porous object, producing a zirconium carbide -- tungsten composite. Normally, this composite material is created at temperatures closer to 2,000 C (3,630 F), and at very high pressures.

Sandhage described some unique features of DCP. "When the reaction is complete, we can have twice as much solid material as we started with. That extra material has to go somewhere, so it fills in the pores of the ceramic, creating a very dense material," he said.

"The composite is very light, too," Sandhage continued. "We’ve made tungsten-bearing composite materials that are 40 percent lighter than plain tungsten."

In another test, the engineers formed a composite of magnesium oxide and plain magnesium at 900 C (1,650 F). Other reactions have taken place at temperatures as low as 750 C (1,382 F), Sandhage said.

One obvious application involves rocket nozzles; two of Sandhage’s former undergraduate students, Matthew Dickerson and Raymond Unocic, won the 2000 National Collegiate Inventors Award for demonstrating that DCP can be used to fabricate composites with ultra-high melting points for applications such as rocket nozzles. Dickerson is now a graduate student in Sandhage’s research group. Unocic will join the group as a graduate student this fall.

Plain tungsten is used to form rocket nozzle liners, because it has the highest melting point of any metal, and won’t oxidize in harsh solid fuel rocket environments. Sandhage said a nozzle made out of a tungsten composite would retain all the good features of plain tungsten, but be much lighter.

Such composites could also be used to form very high quality machine tools and parts for the aerospace, automotive, and manufacturing industries. Because the final part conforms to the shape of the original porous ceramic, there’s no need to reshape the part after processing. This means a potential cost savings for manufacturers, since only expensive diamond tools can shape such parts after they are finished.

Because the DCP process uses lower temperatures than conventional processing, manufacturers could save on electricity costs and use less-expensive furnaces as well, Sandhage said. The DCP process also does not require the use of high pressures -- another potential cost savings.

A start-up company is currently negotiating a license for the process, to further develop it for commercial use.

Contact: Ken Sandhage, (614) 292-6731;
Written by Pam Frost Gorder, (614) 292-9475;

Ken Sandhage | EurekAlert!

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>