Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New way to make dense complex-shaped ceramics at lower cost

21.08.2002


A new way researchers have developed to make dense ceramics in complex shapes could lead to light, tough, and hard ceramic parts at lower cost.



The recently patented technique, called "displacive compensation of porosity," or DCP, uses a chemical reaction between molten metal and a porous ceramic to generate a new composite material. The technique fills the tiny pores inside the ceramic with additional ceramic material. The resulting super-dense part retains the shape of the original ceramic.

The technology could be used to produce rocket nozzles, body armor, and manufacturing tools, explained inventor Ken Sandhage, professor of materials science and engineering at Ohio State University. His partner on the patent, former student Pragati Kumar, now works for Novellus Systems Inc., a maker of semiconductor manufacturing equipment in San Jose.


Manufacturers could make hard heat-resistant ceramics cheaper and easier with DCP, since it works at lower temperatures than conventional methods and eliminates the need for post-process machining, Sandhage said. The first step of the process -- creating a porous ceramic shape, or preform -- is well known in industry.

"The same way you form a teacup, you can make one of our preforms," Sandhage said.

Today’s strongest body armor relies on ceramics, because these materials are lighter and harder than metal. For instance, both military armor and commercially available bulletproof vests can contain ceramic plates wedged between layers of fabric.

Sandhage said manufacturers could create thinner, lighter, and stronger body armor if they used very hard ceramics, such as boron carbide, but such materials are difficult to mold into body-friendly shapes.

With DCP, Sandhage and his students were able to create composites containing some of the world’s hardest materials, including boron carbide, zirconium carbide, hafnium carbide, titanium carbide, and zirconium diboride.

In tests, the Ohio State engineers molded a curved object out of tungsten carbide, a fine gray ceramic powder used in machine tools and abrasives. Then they melted a zirconium-copper alloy and let the molten metal seep into the powder.

"The tungsten carbide sucked up the liquid metal like a sponge sucks up water," Sandhage said.

At temperatures of 1,200 C to 1,300 C (2,190 F to 2,370 F), the metal and ceramic reacted with each other chemically inside the porous object, producing a zirconium carbide -- tungsten composite. Normally, this composite material is created at temperatures closer to 2,000 C (3,630 F), and at very high pressures.

Sandhage described some unique features of DCP. "When the reaction is complete, we can have twice as much solid material as we started with. That extra material has to go somewhere, so it fills in the pores of the ceramic, creating a very dense material," he said.

"The composite is very light, too," Sandhage continued. "We’ve made tungsten-bearing composite materials that are 40 percent lighter than plain tungsten."

In another test, the engineers formed a composite of magnesium oxide and plain magnesium at 900 C (1,650 F). Other reactions have taken place at temperatures as low as 750 C (1,382 F), Sandhage said.

One obvious application involves rocket nozzles; two of Sandhage’s former undergraduate students, Matthew Dickerson and Raymond Unocic, won the 2000 National Collegiate Inventors Award for demonstrating that DCP can be used to fabricate composites with ultra-high melting points for applications such as rocket nozzles. Dickerson is now a graduate student in Sandhage’s research group. Unocic will join the group as a graduate student this fall.

Plain tungsten is used to form rocket nozzle liners, because it has the highest melting point of any metal, and won’t oxidize in harsh solid fuel rocket environments. Sandhage said a nozzle made out of a tungsten composite would retain all the good features of plain tungsten, but be much lighter.

Such composites could also be used to form very high quality machine tools and parts for the aerospace, automotive, and manufacturing industries. Because the final part conforms to the shape of the original porous ceramic, there’s no need to reshape the part after processing. This means a potential cost savings for manufacturers, since only expensive diamond tools can shape such parts after they are finished.

Because the DCP process uses lower temperatures than conventional processing, manufacturers could save on electricity costs and use less-expensive furnaces as well, Sandhage said. The DCP process also does not require the use of high pressures -- another potential cost savings.

A start-up company is currently negotiating a license for the process, to further develop it for commercial use.


Contact: Ken Sandhage, (614) 292-6731; Sandhage.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Ken Sandhage | EurekAlert!

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>