Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer vision for the blind

15.08.2002


The white cane used by the blind as a travel aid may be universal, but it is not always adequate when it comes to pedestrian crossings. Although some crossings make a sound when it is safe to cross, many do not, and it is at these crossings that the blind need to know when the green man is showing. Adaptations of the white cane have been made, which use laser or ultrasonic waves to detect more distant obstacles, but they do not give information about the width of the road or colour of the traffic lights. Professor Shioyama and his colleagues at Kyoto Institute of Technology, Japan have developed a new method to assist the blind in such a situation. Published today in the Institute of Physics journal, Measurement Science and Technology, the device can measure the length of a crossing to within one step length and detect the colour of the traffic light.



Using images from a single camera, the device has a simple structure and does not need camera calibration, unlike sophisticated stereo camera systems, as the information is obtained using what is known as a “camera coordinate system”. This means that separate images do not need to be taken to calibrate the device. The length of a pedestrian crossing is measured by projective geometry, where the camera makes an image of the white lines painted on the road. Using the properties of geometric shapes as seen in the image, the actual distances are determined. Experiments carried out by the researchers showed that the crossing length could be measured to within an error of only 5 percent of the full length – which is less than one step.

The new device can also “see” the colour of the traffic light, even if the person is moving and the image changes. Together, the information gathered by this device will be enough to allow a blind person to know whether or not it is safe to cross a pedestrian crossing.


Prof Shioyama said:
“Travel aids that use laser and ultrasonic waves cannot obtain enough information about the user’s environment. This device is the first step in developing a system which allows the blind to cross the road safely and independently. We hope that the work in this article stimulates the development of such devices to assist the blind.”

Michelle Cain | alfa

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>