Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The crack as a tool

We encounter glass everywhere – as window and facade glazing, coffee-table tops and shelving. A new process makes it possible to cut the brittle material cost-efficiently and opens up new applications thanks to superior edge quality.

Glass is a versatile, popular material for a wide range of applications. Cutting the glass is key to obtaining high-quality products. In the conventional process used to cut flat glass, a small cutter wheel scores a line into the glass. Pressure is then applied to the glass along this line so that it breaks.

Unfortunately, glass splinters may come off in the process, producing defects known as micro-cracks. The glass consequently needs to be reworked by grinding and polishing, which costs time and money. Nonetheless, damages may remain in the glass that reduce its strength.

A great deal of time and money, limited design options – reason enough to develop a better, more effective process for separating glass. In a project funded by the Federal Ministry of Education and Research (BMBF), Dr. Rainer Kübler has been working with his five-strong team on a laser-induced stress separation process for flat glass that causes minimal damage. Dr. Rainer Kübler has been awarded the Joseph-von-Fraunhofer Prize 2008 for his work.

So what do the Fraunhofer scientists do that is different? Instead of scoring the glass mechanically, they do it by applying stress. “We have to heat the glass along the required separation line without damaging it,” explains Dr. Kübler. “We do it with a CO2 laser.” The second part of the secret is to shock-cool the glass by means of a cooling nozzle following right behind the laser beam, blowing cold air onto a specific area of the glass. The temperature difference creates a stress field and, in turn, a crack. Then the thermal crack introduced into the surface by this process is opened by bending the glase plate until it separates. Extensive experience and numerical simulation have helped to manage the process and particularly the crack – to produce the crack in a controlled manner and use it as a tool. “Our process has enabled us to produce extremely high-quality glass edges. And flawless, smooth edges mean firmer glass,” says Dr. Kübler. The stability of the edges determines the strength of the entire pane.

All of this opens up entirely new applications for the use of glass panes in architecture. Thanks to the flawless edges, the installed glass panes can be made thinner without sacrificing any of their reliability. And Grenzebach, the development partner, is a global player in glass production technology, providing the new process with ready access to a global market.

Press Office | alfa
Further information:

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>