Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossils Point the Way to Black Gold

10.06.2002


Drilling for oil is expensive – and only too often unsuccessful: in 80 to 90 per cent of all attempts the drill head ends up in worthless sediment rather than hitting the black jackpot as intended. In this way, with every unsuccessful drilling, companies squander several million euros. Yet there is an alternative: the use of tiny fossilised single-celled organisms can reveal to the expert where prospecting for oil is worth while, a dying art at which only a few specialists worldwide still remain proficient. A micro-palaeontologist at the University of Bonn is now training specialists in this discipline in conjunction with the firm RWE/DEA.


Microfossils
(photo: Langer)



Some of them look like two-euro pieces made of limestone. For oil companies they can be worth their weight in gold, these unicellular organisms from the foraminifer group. In the sediments of the oceans there are sometimes veritable mass graves of these ancient fossils, which are shaped like round, flat discs or small bulbous lenses, some of them smooth, some provided with bizarre protuberances. What they all have in common is the porous limestone shell with which they are surrounded – and which makes them so important in the search for black gold. The reason for this is that sediments with a high proportion of foraminifers can absorb oil and gas in the porous limestone mantles like an enormous sponge – ideal conditions for the existence of a large deposit.

“Oil is formed when organic material is subjected to pressure and high temperatures, usually at a depth of several kilometres beneath the surface of the land or the ocean bed,” Professor Martin Langer of the Bonn Institute of Palaeontology explains. From there the oil passes through the strata of rock above as if through blotting paper, until it is prevented from rising further, for example by a layer of clay, which acts as a kind of lid. Whether the deposit is likely to yield a lot of oil basically depends – apart from the shape of the “lid” – on the storage capacity of the rock strata involved.


In order to detect this popular energy source the companies carry out a kind of “ultrasonic test” in potentially promising areas: they produce sound waves, monitoring the way they expand and are reflected in the ground by means of geophone recordings. Computers then produce pictures on the basis of the seismic data, which show the pattern of strata in the ground – and on which the trained eye can recognise potential deposits. “However, unfortunately the pictures only have a limited spatial resolution, “ Professor Langer explains. “Firms frequently drill a few hundred yards away from the right location. At the depth indicated they then only find empty rocks.” By means of the microfossils which the drill brings to the surface experts can conclude whether the area really is empty, or whether the drill has simply not yet reached the oil deposits. The fossil finds even enable specialists to find their bearings on the seismic map: by comparing the finds with the strata predicted, the micro-palaeontologist can determine where exactly the drilling should be made or how it needs to be corrected at the second attempt.

“Industrial micro-palaeontology is a venerable art,” Professor Langer adds. “All the large oil prospecting companies used to employ their own fossil experts.” When seismology came along it was thought that the new technology alone would solve the problem. “Since 1980 many micro-palaeontologists have been made redundant, which is why there are so few people to take their place.” Many companies have now realised their error, but there is a shortage of specialists who can provide appropriate training for new micro-palaeontologists. Last spring, for the first time, Professor Langer offered a vocational training course in this long neglected field – and it was a huge success. “We had applicants coming for the two-day course from the US, India and South Africa.”

Worldwide there are only a few institutions in the US and Europe which train micro-palaeontologists for the oil industry. After the successful test run Professor Langer’s aim is now to establish the vocational training course at the University on a long-term basis. “Bonn has a long micro-palaeontological tradition. We have at our disposal one of the largest collections in the world. The chances are good that we could become an international centre for this branch of research, which had almost been consigned to oblivion.”

Professor Martin Langer | alfa
Further information:
http://www.uni-bonn.de/Aktuelles/Pressemitteilungen/153_02.html

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>