Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Remote laser cutting of sheet metal with highly brilliant beam sources

02.03.2010
At this year's Hannover Fair the Fraunhofer Institute for Laser Technology ILT is presenting a flexible system concept for laser cutting, welding, structuring and inscribing processes. Thanks to its high flexibility with regard to component geometry it is particularly suitable for the production of prototypes and small series.

On Stand E16 in Hall 6 at the Hannover Fair (MicroNanoTec, April 19 - 23, 2010) the Fraunhofer ILT is showcasing a laser system for remote fine cutting. The Aachen-based research engineers will demonstrate live how the system can be used to cut 0.2 mm-thick steel sheets in seconds.

Fitted with a 1 kW single mode fiber laser and a mirror scanner, the unit can machine components in the millimeter range at cycle times of less than 100 ms. This short processing time is achieved by dispensing with mechanical movement axes. Beam movement is performed by mirrors mounted on highly dynamic galvanometer drives. Cuts of 20 µm are achieved with suitable optical systems, so that precision parts, such stator sheets for electric motors, can be processed rapidly and accurately.

Cost advantages and flexibility for small series

Fine cutting with remote laser is particularly interesting as a means to save costs in the production of prototypes and small series, because it offers much greater flexibility and freedom with regard to component geometry than conventional methods such as milling or punching. Expensive tool changes are not required.

Combined punching-bending processes are a good example. In this case, the punch geometry must first be iteratively matched to the bending process. In conventional production methods the manufacture and adaptation of the punching tools entails high costs and long waiting times. Remote laser cutting offers the advantage that the component geometry can be optimized, within a very short time and at virtually no cost, to achieve the desired shape. In contrast to conventional punching systems, the laser unit is ready to use straightaway. There are no long lead times. Remote laser cutting thus makes it possible to shorten development times and increase process flexibility while reducing costs.

The research engineers based in Aachen are able to put together an installation to match the needs of the specific process by combining predefined modules. A suitable optical system with matching laser beam source is integrated in a machine housing and, if necessary, fitted with additional sensors or a clamping device. The system can be used for inscribing, plastic welding, microstructuring, remote laser cutting and metal welding.

Contacts at the Fraunhofer ILT
Our experts will be pleased to assist if you have any questions:
Dr.-Ing. Jens Holtkamp
Expert Group Ablation and Joining
Phone +49 241 8906-273
jens.holtkamp@ilt.fraunhofer.de
Dr.-Ing. Arnold Gillner
Manager of Expert Group Ablation and Joining
Phone +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121

Axel Bauer | Fraunhofer Gesellschaft
Further information:
http://www.ilt.fraunhofer.de

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>