Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New process promises to revolutionize manufacturing of products

02.09.2010
A new "smart materials" process - Multiple Memory Material Technology - developed by University of Waterloo engineering researchers promises to revolutionize the manufacture of diverse products such as medical devices, microelectromechanical systems (MEMS), printers, hard drives, automotive components, valves and actuators.

The breakthrough technology will provide engineers with much more freedom and creativity by enabling far greater functionality to be incorporated into medical devices such as stents, braces and hearing aids than is currently possible.

Smart materials, also known as shape memory alloys, have been around for several decades and are well known for their ability to remember a pre-determined shape.

Traditional memory materials remember one shape at one temperature and a second shape at a different temperature. Until now they have been limited to change shape at only one temperature. Now with the new Waterloo technology they can remember multiple different memories, each one with a different shape.

"This ground-breaking technology makes smart materials even smarter," said Ibraheem Khan, a research engineer and graduate student working with Norman Zhou, a professor of mechanical and mechatronics engineering. "We have developed a technology that embeds several memories in a monolithic smart material. In essence, a single material can be programmed to remember more shapes, making it smarter than previous technologies."

The patent pending technology, which is available for licensing, allows virtually any memory material to be quickly and easily embedded with additional local memories.

The transition zone area can be as small as a few microns in width with multiple zones, each having a discrete transition temperature. As the processed shape memory material is subject to changing temperature, each treated zone will change shape at its respective transition temperature. As well, transition zones created side-by-side allow for a unique and smooth shape change in response to changing temperature.

Several prototypes have been developed to demonstrate this pioneering technology.

One mimics a transformer robot. The robot's limbs transform with increasing temperature at discrete temperatures, whereas in conventional shape memory technology this is limited to only one transformation temperature.

A video demonstrating the miniature robot can be seen at: www.research.uwaterloo.ca/watco/technologies/eng_memory_material.asp

The engineering technology was developed in the Centre for Advanced Materials Joining, based in Waterloo's department of mechanical and mechatronics engineering.

About Waterloo

The University of Waterloo, located at the heart of Canada's Technology Triangle, is one of Canada's leading comprehensive universities. Waterloo is home to 30,000 full- and part-time undergraduate and graduate students who are dedicated to making the future better and brighter. Waterloo, known for the largest post- secondary co-operative education program in the world, supports enterprising partnerships in learning, research and discovery.

Resources
Contacts:
Ibraheem Khan, Research Engineer, Centre for Advanced Materials
Joining, 519- 888-4567 ext. 37142, 416-300-6616 or mi2khan@uwaterloo.ca
Norman Zhou, Director, Centre for Advanced Materials Joining,
519-888-4567 ext. 36095 or nzhou@uwaterloo.ca
Eric Luvisotto, Patent Agent and Technology Transfer Officer,
519-888-4567. ext. 38678 or e2luviso@uwaterloo.ca
John Morris, Waterloo Media Relations, 519-888-4435 or jmorris@uwaterloo.ca

John Morris | EurekAlert!
Further information:
http://www.uwaterloo.ca

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>