Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Performance test proves economy efficiency of Corex hot-metal production route

22.08.2012
One year following startup of the second Corex module at the Chinese steelmaker Baosteel in Shanghai, a successful performance test has now proven the economy efficiency of this alternative technology for the production of hot metal.

After the successful performance test, on June 5, 2012, also the Final Acceptance Certificate has been signed by Baosteel. "As opposed to the conventional blast-furnace route, the Corex production costs are substantially lower," Dieter Siuka said about the performance test. Mr. Siuka is responsible worldwide for iron production at Siemens Metals Technologies.


Siemens Corex C-3000 plants at Baosteel, Shanghai, China

Less expensive and locally available raw materials yield the same quality of hot metal as higher-quality imports. Siuka expects that the Corex route will now be further rolled out as an alternative to conventional blast furnace production, especially in markets with increasing hot-metal production.

Following startup of the Corex plant in March 2011, Baosteel and Siemens have been working together over the past few months to optimize operation of the plant, which is designed for the production of 1.5 million tons of hot metal per year. "All performance parameters stipulated in the contract were achieved or exceeded," Siuka reported. The performance test was completed in a total of 170 hours. The guaranteed production rate of 175 tons of hot metal per hour was achieved in addition to a reduction in the specific fuel rate from 950 kg to 870 kg per ton of hot metal based on local raw materials. Uniformly high quality of the hot metal was achieved in spite of the heavy fluctuation in the quality of the raw materials. "The quality of the hot metal produced in the Corex plant is comparable to that found in the product of conventional blast furnaces," Siuka emphasized.

In light of the continuing depletion and the high cost of high-quality raw materials, and because of the environmental restrictions placed on blast furnace operation in numerous countries, the Corex-C-3000 route offers an environmentally compatible and economically efficient alternative that conserves resources. The successful performance test is a "further milestone in commercialization of the Corex production technology," Siuka emphasized, who expects demand "particularly in markets with increasing hot-metal production levels and where raw materials are readily available." Current plans at Baosteel call for continued operation of the Corex plant at high capacity.

The conventional blast furnace route consists of the sintering plant, coke oven plant and the blast furnace and produces hot metal from agglomerated iron ore (sinter) with the help of coke. In addition to high investment costs, the disadvantages of this route include the comparatively high emissions, for example, of sulfur oxides (SOx), nitrous oxides (NOx), dust and phenols. Liquid hot metal produced in the Corex route is melted directly from pellets and lump ore, and non-coking coal is the primary source of energy. In comparison with the conventional route, the production costs and emissions of the Corex route are lower because the coking and sintering plants (systems with the highest emissions) are not required. The Corex gas can also be used as an energy source to generate electricity or as a reducing gas in a direct-reduction plant.

Further information about solutions for steel works, rolling mills and processing lines is available at http://www.siemens.com/metals

The Siemens Industry Sector (Erlangen, Germany) is the world's leading supplier of innovative and environmentally friendly products and solutions for industrial customers. With end-to-end automation technology and industrial software, solid vertical-market expertise, and technology-based services, the Sector enhances its customers' productivity, efficiency, and flexibility. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Divisions Industry Automation, Drive Technologies and Customer Services as well as the Business Unit Metals Technologies. For more information, visit http://www.siemens.com/industry

The Metals Technologies Business Unit (Linz, Austria), part of the Siemens Industry Sector, is one of the world's leading life cycle partners for the metallurgical industry. The Business Unit offers a comprehensive technology, modernization, product and service portfolio as well as integrated automation and environmental solutions covering the entire lifecycle of plants. For more information, visit http://www.siemens.com/metals

Corex is a registered trademark of Siemens AG and/or one of its subsidiaries

Reference Number: IMT201208240e

Contact
Mr. Wieland Simon
Metals Technologies
Siemens AG
Turmstr. 44
4031 Linz
Austria
Tel: +43 (732) 6592-5919
wieland.simon@siemens.com

Wieland Simon | Siemens Industry
Further information:
http://www.siemens.com

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>