Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optimized Production of Solar Absorbers

26.11.2010
Saving energy for saving energy:
A new laser welding process can be used for saving energy during the manufacturing of solar absorbers, for joining copper tubes to aluminum sheets. Also, the strength of the welding is improved.

A new laser welding process promises both an enormous potential for saving energy and higher welding strengths for the manufacturing of solar absorbers. The main element of this innovative process is a diode laser, which is used to join the copper tubes to the aluminum absorber sheet, instead of using the conventional solid-state laser. The Laser Zentrum Hannover e.V. (LZH) presented first successful results of this project at the end of October at the fair EuroBlech 2010.


The quality of the diode laser welded Cu-Al connection (small section hanging on the solar absorber) impressed the EuroBlech fair visitors.

Solar absorbers stand for energy savings. As the main element in solar collector systems, they use the sun's energy to warm up water and save on heating costs. However, much energy is needed to manufacture the solar absorbers. To weld the copper tubes to the absorber sheets, most manufacturers use two pulsed, solid-state lasers with peak energies up to 6 kW. These flashlamp pumped lasers have a rather low working efficiency, making laser processing very energy intensive, and expensive.

The group "Joining and Separating of Metals" of the Materials and Processing Department of the LZH uses only one 4 kW diode laser for the welding process. This laser not only has a much higher efficiency rate, but it also uses the laser energy better, because copper and aluminum both have higher absorption characteristics for the typical diode laser wavelengths used (800 to 980 nm). A further advantage is that the size of the welding spots can be increased, and wider welding spots mean higher weld stability. It is especially important that the thermal input can be regulated, as an excessive thermal load could damage the absorber coating.

The cooperative project between the Hannoverian laser researchers and the metal-working company Flexxibl GmbH from Brunswick, Germany, is now entering a decisive phase. Following the positive resonance to the welding results shown at the EuroBlech, the partners are now working on developing a new laser processing head for solar absorber welding. In the spring of 2011, they plan on presenting this new diode laser welding head to the absorber industry.

The project (project number KF2186401AB9) is supported by AiF (German Federation of Industrial Research Associations) and runs until the end of February 2011.

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover
Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | idw
Further information:
http://www.lzh.de

More articles from Process Engineering:

nachricht Innovative process for environmentally friendly manure treatment comes onto the market
03.05.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>