Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Nanotube Coating Enables Novel Laser Power Meter

11.05.2009
The U.S. military can now calibrate high-power laser systems, such as those intended to defuse unexploded mines, more quickly and easily thanks to a novel nanotube-coated power measurement device developed at the National Institute of Standards and Technology (NIST).

The new laser power meter, tested at a U.S. Air Force base last week, will be used to measure the light emitted by 10-kilowatt (kW) laser systems. Light focused from a 10 kW laser is more than a million times more intense than sunlight reaching the Earth.

Until now, NIST-built power meters, just like the lasers they were intended to measure, were barely portable and operated slowly. The new power meter is much smaller—about the size of a crock pot rather than a refrigerator. It also features a new design that enables it to make continuous power measurements.

A key innovation is the use of a sprayed-on coating of carbon nanotubes—tiny cylinders made of carbon atoms—which conduct heat hundreds of times better than conventional detector coating materials.

In the new power meter, laser light is absorbed in a cone-shaped copper cavity, where a spinning mirror directs the light over a large area and distributes the heat uniformly. The cavity is lined with a NIST-developed coating made of multiwalled carbon nanotubes held together by a potassium silicate (water glass) binder, and surrounded by a water jacket. The coating absorbs light and converts it to heat. The resulting rise in water temperature generates a current, which is measured to determine the power of the laser.

NIST has developed and maintained optical power standards for decades. In recent years, NIST researchers have experimented with a variety of coatings made of nanotubes because they offer an unusual combination of desirable properties, including intense black color for maximum light absorption. Designing a detector to collect and measure all of the power from a laser intended to significantly alter its target is a significant challenge. The new power meter uses the latest version of NIST’s nanotube coating,* which absorbs light efficiently, is more stable than some conventional coatings such as carbon black, and resists laser damage as effectively as commercial ceramic coatings.

Among other test results, NIST has found that multiwalled carbon nanotubes perform better than single-walled nanotubes. Researchers are continuing to seek nanotube formulas that are durable and easy to apply, like enamel paint, but have even higher damage thresholds than today’s coatings.

NIST’s nanotube coating technology already has been transferred to industry for use in commercial products. Development of the new power meter was funded by the Air Force.

* C.L. Cromer, K.E. Hurst, X. Li and J.H. Lehman. Black optical coating for high-power laser measurements from carbon nanotubes and silicate. Optics Letters. January 15, 2009, Vol. 34, No. 2

Laura Ost | Newswise Science News
Further information:
http://www.nist.gov

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>