Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Nanotube Coating Enables Novel Laser Power Meter

11.05.2009
The U.S. military can now calibrate high-power laser systems, such as those intended to defuse unexploded mines, more quickly and easily thanks to a novel nanotube-coated power measurement device developed at the National Institute of Standards and Technology (NIST).

The new laser power meter, tested at a U.S. Air Force base last week, will be used to measure the light emitted by 10-kilowatt (kW) laser systems. Light focused from a 10 kW laser is more than a million times more intense than sunlight reaching the Earth.

Until now, NIST-built power meters, just like the lasers they were intended to measure, were barely portable and operated slowly. The new power meter is much smaller—about the size of a crock pot rather than a refrigerator. It also features a new design that enables it to make continuous power measurements.

A key innovation is the use of a sprayed-on coating of carbon nanotubes—tiny cylinders made of carbon atoms—which conduct heat hundreds of times better than conventional detector coating materials.

In the new power meter, laser light is absorbed in a cone-shaped copper cavity, where a spinning mirror directs the light over a large area and distributes the heat uniformly. The cavity is lined with a NIST-developed coating made of multiwalled carbon nanotubes held together by a potassium silicate (water glass) binder, and surrounded by a water jacket. The coating absorbs light and converts it to heat. The resulting rise in water temperature generates a current, which is measured to determine the power of the laser.

NIST has developed and maintained optical power standards for decades. In recent years, NIST researchers have experimented with a variety of coatings made of nanotubes because they offer an unusual combination of desirable properties, including intense black color for maximum light absorption. Designing a detector to collect and measure all of the power from a laser intended to significantly alter its target is a significant challenge. The new power meter uses the latest version of NIST’s nanotube coating,* which absorbs light efficiently, is more stable than some conventional coatings such as carbon black, and resists laser damage as effectively as commercial ceramic coatings.

Among other test results, NIST has found that multiwalled carbon nanotubes perform better than single-walled nanotubes. Researchers are continuing to seek nanotube formulas that are durable and easy to apply, like enamel paint, but have even higher damage thresholds than today’s coatings.

NIST’s nanotube coating technology already has been transferred to industry for use in commercial products. Development of the new power meter was funded by the Air Force.

* C.L. Cromer, K.E. Hurst, X. Li and J.H. Lehman. Black optical coating for high-power laser measurements from carbon nanotubes and silicate. Optics Letters. January 15, 2009, Vol. 34, No. 2

Laura Ost | Newswise Science News
Further information:
http://www.nist.gov

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>