Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modeling ice cream production in the search for innovation

07.11.2008
The production of ice cream, a seemingly simple product, brings into play a variety of complex hydrodynamic and thermic processes, with as yet poorly known interactions. To assist industry in making new products, Cemagref scientists have developed a simulator, the size of a yogurt cup, capable of miming the entire production chain.

Everyone is familiar with and enjoys ice cream. But do we really know how it is produced on an industrial scale? During ice cream’s production process, the starting liquid or semiliquid is placed in the industrial equipment, specifically a heat exchanger, whose internal surface is scraped with the blades of a rotor.

The liquid or semiliquid undergoes abrupt and rapid temperature changes and mechanical shearing that substantially modifies its form, particularly its viscosity. This cream is transformed from a liquid state, somewhat like concentrated milk, to a product whose texture is as rigid as soft Italian ice cream.

- A consistency that evolves over time

This progression results from the progressive formation of a multitude of small ice crystals, transforming so that the fluid flows within the industrial equipment. These modifications, which vary over time and even within the exchanger, also directly influence the temperatures in the mixture. At this point, the product’s viscosity is evolving continually. Yet the interaction mechanisms operating in the transforming fluid, which flows and becomes more and more consistent, remain poorly understood and controlled. Today, they are a technological obstacle for industry, which is seeking to innovate and create new textures and new products, and a brake to the development of new processes.

- A solution that fits in the palm of your hand

Cemagref scientists studying these complex hydrodynamic and thermal processes have developed an experimental tool the size of a 100-ml yogurt cup, making it possible to simulate volumes greater than 500 liters an hour. This simulator can apply the temperature speed changes and mechanical shearing intensities that these products undergo in industrial equipment. With this small prototype, describing and predicting the changes in flow behavior of products are now possible in extreme conditions – at -40°C for example – varying the parameters such as duration, flow speed, pressure, temperature, scraping, and rotor speed. In the laboratory, the simulation of what happens in actual production conditions offers industry new perspectives, making it possible to test a large number of formulations in a short period of time, with obvious cost gains, in the search for new products with hitherto unknown properties.

Another simulator working on a similar principle to study cooking and cooling of milk-based desserts was already patented in 2005, with Danone the industrial partner.

An ANR project in the background
This equipment was developed within the SIMPFRI (Sûreté, Innovation et Maîtrise de l’énergie dans les Procédés Frigorifiques) project. This project was financed by the National Agency for Research (Agence Nationale pour la Recherche; ANR) within its National Project for Research on Nutrition and Human Foods (Projet National pour la recherche en Nutrition alimentation humaine), launched in 2005 by INRA. At the crossroads of process engineering, hygiene, microbiology, and energetics, it aims to better understand the phenomena of microbial contamination in cooling equipment and improve the energy performance of this equipment. The 14 partners involved in this research project bring together skills in hygienics and food safety, fluid mechanics, aeraulics, thermics, and energetics.

Marie Signoret | alfa
Further information:
http://www.cemagref.fr
http://www.cemagref.fr/Informations/Presse/InfMediaEV/im88/im88_rech2_gb.htm
http://simpfri.cemagref.fr/

More articles from Process Engineering:

nachricht CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass
25.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>