Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modeling ice cream production in the search for innovation

07.11.2008
The production of ice cream, a seemingly simple product, brings into play a variety of complex hydrodynamic and thermic processes, with as yet poorly known interactions. To assist industry in making new products, Cemagref scientists have developed a simulator, the size of a yogurt cup, capable of miming the entire production chain.

Everyone is familiar with and enjoys ice cream. But do we really know how it is produced on an industrial scale? During ice cream’s production process, the starting liquid or semiliquid is placed in the industrial equipment, specifically a heat exchanger, whose internal surface is scraped with the blades of a rotor.

The liquid or semiliquid undergoes abrupt and rapid temperature changes and mechanical shearing that substantially modifies its form, particularly its viscosity. This cream is transformed from a liquid state, somewhat like concentrated milk, to a product whose texture is as rigid as soft Italian ice cream.

- A consistency that evolves over time

This progression results from the progressive formation of a multitude of small ice crystals, transforming so that the fluid flows within the industrial equipment. These modifications, which vary over time and even within the exchanger, also directly influence the temperatures in the mixture. At this point, the product’s viscosity is evolving continually. Yet the interaction mechanisms operating in the transforming fluid, which flows and becomes more and more consistent, remain poorly understood and controlled. Today, they are a technological obstacle for industry, which is seeking to innovate and create new textures and new products, and a brake to the development of new processes.

- A solution that fits in the palm of your hand

Cemagref scientists studying these complex hydrodynamic and thermal processes have developed an experimental tool the size of a 100-ml yogurt cup, making it possible to simulate volumes greater than 500 liters an hour. This simulator can apply the temperature speed changes and mechanical shearing intensities that these products undergo in industrial equipment. With this small prototype, describing and predicting the changes in flow behavior of products are now possible in extreme conditions – at -40°C for example – varying the parameters such as duration, flow speed, pressure, temperature, scraping, and rotor speed. In the laboratory, the simulation of what happens in actual production conditions offers industry new perspectives, making it possible to test a large number of formulations in a short period of time, with obvious cost gains, in the search for new products with hitherto unknown properties.

Another simulator working on a similar principle to study cooking and cooling of milk-based desserts was already patented in 2005, with Danone the industrial partner.

An ANR project in the background
This equipment was developed within the SIMPFRI (Sûreté, Innovation et Maîtrise de l’énergie dans les Procédés Frigorifiques) project. This project was financed by the National Agency for Research (Agence Nationale pour la Recherche; ANR) within its National Project for Research on Nutrition and Human Foods (Projet National pour la recherche en Nutrition alimentation humaine), launched in 2005 by INRA. At the crossroads of process engineering, hygiene, microbiology, and energetics, it aims to better understand the phenomena of microbial contamination in cooling equipment and improve the energy performance of this equipment. The 14 partners involved in this research project bring together skills in hygienics and food safety, fluid mechanics, aeraulics, thermics, and energetics.

Marie Signoret | alfa
Further information:
http://www.cemagref.fr
http://www.cemagref.fr/Informations/Presse/InfMediaEV/im88/im88_rech2_gb.htm
http://simpfri.cemagref.fr/

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>