Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modeling ice cream production in the search for innovation

07.11.2008
The production of ice cream, a seemingly simple product, brings into play a variety of complex hydrodynamic and thermic processes, with as yet poorly known interactions. To assist industry in making new products, Cemagref scientists have developed a simulator, the size of a yogurt cup, capable of miming the entire production chain.

Everyone is familiar with and enjoys ice cream. But do we really know how it is produced on an industrial scale? During ice cream’s production process, the starting liquid or semiliquid is placed in the industrial equipment, specifically a heat exchanger, whose internal surface is scraped with the blades of a rotor.

The liquid or semiliquid undergoes abrupt and rapid temperature changes and mechanical shearing that substantially modifies its form, particularly its viscosity. This cream is transformed from a liquid state, somewhat like concentrated milk, to a product whose texture is as rigid as soft Italian ice cream.

- A consistency that evolves over time

This progression results from the progressive formation of a multitude of small ice crystals, transforming so that the fluid flows within the industrial equipment. These modifications, which vary over time and even within the exchanger, also directly influence the temperatures in the mixture. At this point, the product’s viscosity is evolving continually. Yet the interaction mechanisms operating in the transforming fluid, which flows and becomes more and more consistent, remain poorly understood and controlled. Today, they are a technological obstacle for industry, which is seeking to innovate and create new textures and new products, and a brake to the development of new processes.

- A solution that fits in the palm of your hand

Cemagref scientists studying these complex hydrodynamic and thermal processes have developed an experimental tool the size of a 100-ml yogurt cup, making it possible to simulate volumes greater than 500 liters an hour. This simulator can apply the temperature speed changes and mechanical shearing intensities that these products undergo in industrial equipment. With this small prototype, describing and predicting the changes in flow behavior of products are now possible in extreme conditions – at -40°C for example – varying the parameters such as duration, flow speed, pressure, temperature, scraping, and rotor speed. In the laboratory, the simulation of what happens in actual production conditions offers industry new perspectives, making it possible to test a large number of formulations in a short period of time, with obvious cost gains, in the search for new products with hitherto unknown properties.

Another simulator working on a similar principle to study cooking and cooling of milk-based desserts was already patented in 2005, with Danone the industrial partner.

An ANR project in the background
This equipment was developed within the SIMPFRI (Sûreté, Innovation et Maîtrise de l’énergie dans les Procédés Frigorifiques) project. This project was financed by the National Agency for Research (Agence Nationale pour la Recherche; ANR) within its National Project for Research on Nutrition and Human Foods (Projet National pour la recherche en Nutrition alimentation humaine), launched in 2005 by INRA. At the crossroads of process engineering, hygiene, microbiology, and energetics, it aims to better understand the phenomena of microbial contamination in cooling equipment and improve the energy performance of this equipment. The 14 partners involved in this research project bring together skills in hygienics and food safety, fluid mechanics, aeraulics, thermics, and energetics.

Marie Signoret | alfa
Further information:
http://www.cemagref.fr
http://www.cemagref.fr/Informations/Presse/InfMediaEV/im88/im88_rech2_gb.htm
http://simpfri.cemagref.fr/

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

High conductive foils enabling large area lighting

29.06.2017 | Power and Electrical Engineering

Designed proteins to treat muscular dystrophy

29.06.2017 | Life Sciences

Climate Fluctuations & Non-equilibrium Statistical Mechanics: An Interdisciplinary Dialog

29.06.2017 | Seminars Workshops

VideoLinks
B2B-VideoLinks
More VideoLinks >>>