Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


So that medicine does not volatilize: New measuring method detects leaking pharmaceutical packages

In pharmaceutical industry, expensive agents are filled in medicinal flasks day in, day out. The manufacturer needs to ensure that no package is leaking before it reaches the customers.

Today, extensive testing is done by extremely precise weighing machines. These machines are indeed able to detect tiny weight differences, the test, however, takes a long time.

Engineers at Saarland University have now developed a much more simple and cost-efficient measurement technique which uses gas sensors being able to detect small fluid leakages of less than one milligram per day.

The market-ready method can be applied to various containers and will be presented by the company 3S at Saarland research booth at Hannover Fair from April 19th to 23rd (Hall 2, Stand C44).

Starting from a request from a completely different field, namely the automotive industry, the basic method has been developed at Saarland University. "If a fluid-filled tilt sensor, an important component of many car alarm systems, is defectively produced and shows smallest capillary cracks, its content will evaporate over the course of time. This needs to be detected already during production process, before the sensor is integrated in the car" describes Andreas Schütze, professor for measurement technology at Saarland University, the challenges of industry. Therefore, his team has developed a method which uses extremely sensitive gas sensors instantaneously sniffing if only a thousandth gram of the fluid escapes the container. "This measurement technology can be installed at the end of the production chain in many industrial fields, so that the product is tested there before it leaves the factory" says Schütze.

In contrast to other testing methods, the measurement chamber neither needs to generate a vacuum nor to work at higher temperatures. The device under test is placed in the measurement chamber just for a short time. The chamber only needs to be a little larger than the device itself. Then, ambient air is let in to transport possibly leaking vapors to the gas sensors. These sensors detect within seconds, whether a package is leaking or not, thus allowing a separate test of each device. Meanwhile, the patented method has been adapted to the needs of pharmaceutical companies and chemical industry. There, it is used for process development as well as for final testing. "A company asked us to check their fluid-filled medicinal flasks for leaks and now uses our method for integrity testing", explains Thorsten Conrad, managing partner of 3S, a Saarland University spin-off company commercializing the technique. For him, the method is not only advantageous due to its significantly simplified handling and the hundred percent hit rates of the gas sensors at quality control. "The measurement technology also prevents considerable costs and damage to the company's image resulting from the need for calling back defective products" explains the engineer from Saarbrücken.

Questions will be answered by:

Prof. Dr. Andreas Schütze
Lehrstuhl für Messtechnik der Universität des Saarlandes
Tel. 0681 / 302 4663
3S GmbH - Sensors, Signal processing, Systems
Thorsten Conrad
Tel. 0681 / 91 003 52
Tel. 0511 / 89 497101 (Telefon am Messestand)

Friederike Meyer zu Tittingdorf | idw
Further information:

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>