Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

So that medicine does not volatilize: New measuring method detects leaking pharmaceutical packages

06.04.2010
In pharmaceutical industry, expensive agents are filled in medicinal flasks day in, day out. The manufacturer needs to ensure that no package is leaking before it reaches the customers.

Today, extensive testing is done by extremely precise weighing machines. These machines are indeed able to detect tiny weight differences, the test, however, takes a long time.

Engineers at Saarland University have now developed a much more simple and cost-efficient measurement technique which uses gas sensors being able to detect small fluid leakages of less than one milligram per day.

The market-ready method can be applied to various containers and will be presented by the company 3S at Saarland research booth at Hannover Fair from April 19th to 23rd (Hall 2, Stand C44).

Starting from a request from a completely different field, namely the automotive industry, the basic method has been developed at Saarland University. "If a fluid-filled tilt sensor, an important component of many car alarm systems, is defectively produced and shows smallest capillary cracks, its content will evaporate over the course of time. This needs to be detected already during production process, before the sensor is integrated in the car" describes Andreas Schütze, professor for measurement technology at Saarland University, the challenges of industry. Therefore, his team has developed a method which uses extremely sensitive gas sensors instantaneously sniffing if only a thousandth gram of the fluid escapes the container. "This measurement technology can be installed at the end of the production chain in many industrial fields, so that the product is tested there before it leaves the factory" says Schütze.

In contrast to other testing methods, the measurement chamber neither needs to generate a vacuum nor to work at higher temperatures. The device under test is placed in the measurement chamber just for a short time. The chamber only needs to be a little larger than the device itself. Then, ambient air is let in to transport possibly leaking vapors to the gas sensors. These sensors detect within seconds, whether a package is leaking or not, thus allowing a separate test of each device. Meanwhile, the patented method has been adapted to the needs of pharmaceutical companies and chemical industry. There, it is used for process development as well as for final testing. "A company asked us to check their fluid-filled medicinal flasks for leaks and now uses our method for integrity testing", explains Thorsten Conrad, managing partner of 3S, a Saarland University spin-off company commercializing the technique. For him, the method is not only advantageous due to its significantly simplified handling and the hundred percent hit rates of the gas sensors at quality control. "The measurement technology also prevents considerable costs and damage to the company's image resulting from the need for calling back defective products" explains the engineer from Saarbrücken.

Questions will be answered by:

Prof. Dr. Andreas Schütze
Lehrstuhl für Messtechnik der Universität des Saarlandes
Tel. 0681 / 302 4663
E-Mail: schuetze@lmt.uni-saarland.de
3S GmbH - Sensors, Signal processing, Systems
Thorsten Conrad
Tel. 0681 / 91 003 52
Tel. 0511 / 89 497101 (Telefon am Messestand)
E-Mail: Conrad@3S-ing.de

Friederike Meyer zu Tittingdorf | idw
Further information:
http://www.lmt.uni-saarland.de
http://www.3S-ing.de
http://www.uni-saarland.de/pressefotos

More articles from Process Engineering:

nachricht Fraunhofer researchers develop measuring system for ZF factory in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>