Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LIFTSYS prototype machine for transferring biomaterials

29.07.2013
At the Fraunhofer Institute for Laser Technology ILT, an interdisciplinary team of researchers is working on a method for transferring biomaterials and on innovative systems technology.

Now the scientists in Aachen have managed to manufacture a machine for medical and pharmaceutical research based on the laser-induced forward transfer (LIFT) method.


Transferring biomaterials to a microarray chip using the LIFT method.
Source: Fraunhofer ILT, Aachen


LIFTSYS machine at Fraunhofer ILT, used for selectively transferring biomaterials.
Source: Fraunhofer ILT, Aachen

The system is to be used mainly for the selective transfer of hydrogels, living cells, and other biomaterials. The first prototype machine, known as LIFTSYS, was recently delivered to the Swiss Federal Institute of Technology in Lausanne EPFL.

The LIFT method can be used whenever tiny amounts of material need to be applied onto receiver substrates with pinpoint precision. One broad field of application for the technology is medical and pharmaceutical research, for instance, where diseases and active pharmaceutical ingredients are studied in specially made test structures. Here it is imperative to apply the precious material selectively and as sparingly as possible onto a receiver substrate. The LIFT method facilitates the transfer of a broad range of materials, such as glycoproteins, living cells, and metals – with high precision and using up a minimum of resources. The Biofabrication Group at Fraunhofer ILT is currently working on further developing complex cell-based in vitro test systems.

Transferring material without a printer head: cost-effective and reliable

This is how the printing process works: the receiver substrate is situated beneath a glass slide bearing the biomaterial to be transferred on its underside and an intermediate titanium absorber layer. A pulsed laser beam evaporates the titanium layer, and the resulting forwards impulse transfers the biomaterial onto the receiver substrate. This laser-based process has no need of a printer head and so it can transfer biomaterials such as RNA, DNA, proteins, and cells regardless of their viscosity. The absence of a printer head also means there is none of the associated sample wastage caused, for example, by feeder lines. This dramatically reduces the amount of material required to carry out an analysis. What is more, the LIFT method can produce spot sizes of 10 µm to 300 µm – which means up to 500,000 protein spots can fit onto a surface the size of a thumbnail. Until now it has not been possible to build up sample material with such precision and efficiency and in such small amounts.

From laboratory setups to a user-friendly machine

Fraunhofer ILT’s system development resulted in an innovative five-axis machine with motion systems for transfer and receiver substrates. The built-in beam source can be set to the wavelengths 355 nm or 1064 nm, and the focal position, laser power, and number of pulses can be automatically controlled. This enables the user to transfer a wide range of substances, from biomaterials to metals, with the LIFTSYS machine.

Researchers from the Process Control and System Technology Group in Aachen further developed the initial laboratory setups into the LIFTSYS machine. A main focus of their work was to ensure that the prototype was intuitive to operate. To this end, they integrated PC-based visualization and control technology into the system. There are two easy operating concepts for users to choose from: one is a graphical user interface, from which all elements of the system can be easily controlled; and the other is text-based programming in G-code. In addition to positioning commands, this text language also contains add-ons for laser processing: for example, laser pulses can be triggered individually and pulse energies changed. This makes it possible to program complex transfer patterns and assign them to a specific processing result.

Applications at EPFL in Lausanne

The Swiss Federal Institute of Technology in Lausanne EPFL is performing research in inkjet printing for various applications in micro-engineering, material science and bio-engineering. “The new LIFT method is a very interesting alternative to conventional nozzle-based inkjet printing, as new classes of materials can be locally deposited with low material waste,” explains Prof. Juergen Brugger of the EPFL. “The fact that even very high viscous liquids and solid films can be locally transferred to a receiver substrate makes the technique very versatile for several of our research groups.” The scientists at EPFL will first perform basic research to study the morphology and materials properties of the deposited pattern and will then benchmark the LIFT method with conventional inkjet printing. Subsequently, research for selected applications in the fields of semiconductors, biomaterials or sensors will be addressed. EPFL will also allow students to work on the new LIFT tool, preparing thus future engineers and scientists to be familiar with innovative surface patterning methods to enable novel manufacturing schemes and ultimately new applications.

LIFTSYS at Biotechnica 2013

At this year’s Biotechnica – Europe’s no.1 event for biotechnology, life sciences, and lab technology, which will take place in Hannover, Germany, from October 8 to 10, 2013 – Fraunhofer ILT will be presenting its LIFTSYS machine for the application field of in vitro test systems. At the joint Fraunhofer booth in Hall 9.E09, experts will be demonstrating a prototype machine along with other exhibits from the field of biofabrication.

Contact

Dr. Martin Wehner
Head Biotechnology and Laser Therapy Group
Telefon: +49 241 8906-202
martin.wehner@ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>