Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LIFTSYS prototype machine for transferring biomaterials

29.07.2013
At the Fraunhofer Institute for Laser Technology ILT, an interdisciplinary team of researchers is working on a method for transferring biomaterials and on innovative systems technology.

Now the scientists in Aachen have managed to manufacture a machine for medical and pharmaceutical research based on the laser-induced forward transfer (LIFT) method.


Transferring biomaterials to a microarray chip using the LIFT method.
Source: Fraunhofer ILT, Aachen


LIFTSYS machine at Fraunhofer ILT, used for selectively transferring biomaterials.
Source: Fraunhofer ILT, Aachen

The system is to be used mainly for the selective transfer of hydrogels, living cells, and other biomaterials. The first prototype machine, known as LIFTSYS, was recently delivered to the Swiss Federal Institute of Technology in Lausanne EPFL.

The LIFT method can be used whenever tiny amounts of material need to be applied onto receiver substrates with pinpoint precision. One broad field of application for the technology is medical and pharmaceutical research, for instance, where diseases and active pharmaceutical ingredients are studied in specially made test structures. Here it is imperative to apply the precious material selectively and as sparingly as possible onto a receiver substrate. The LIFT method facilitates the transfer of a broad range of materials, such as glycoproteins, living cells, and metals – with high precision and using up a minimum of resources. The Biofabrication Group at Fraunhofer ILT is currently working on further developing complex cell-based in vitro test systems.

Transferring material without a printer head: cost-effective and reliable

This is how the printing process works: the receiver substrate is situated beneath a glass slide bearing the biomaterial to be transferred on its underside and an intermediate titanium absorber layer. A pulsed laser beam evaporates the titanium layer, and the resulting forwards impulse transfers the biomaterial onto the receiver substrate. This laser-based process has no need of a printer head and so it can transfer biomaterials such as RNA, DNA, proteins, and cells regardless of their viscosity. The absence of a printer head also means there is none of the associated sample wastage caused, for example, by feeder lines. This dramatically reduces the amount of material required to carry out an analysis. What is more, the LIFT method can produce spot sizes of 10 µm to 300 µm – which means up to 500,000 protein spots can fit onto a surface the size of a thumbnail. Until now it has not been possible to build up sample material with such precision and efficiency and in such small amounts.

From laboratory setups to a user-friendly machine

Fraunhofer ILT’s system development resulted in an innovative five-axis machine with motion systems for transfer and receiver substrates. The built-in beam source can be set to the wavelengths 355 nm or 1064 nm, and the focal position, laser power, and number of pulses can be automatically controlled. This enables the user to transfer a wide range of substances, from biomaterials to metals, with the LIFTSYS machine.

Researchers from the Process Control and System Technology Group in Aachen further developed the initial laboratory setups into the LIFTSYS machine. A main focus of their work was to ensure that the prototype was intuitive to operate. To this end, they integrated PC-based visualization and control technology into the system. There are two easy operating concepts for users to choose from: one is a graphical user interface, from which all elements of the system can be easily controlled; and the other is text-based programming in G-code. In addition to positioning commands, this text language also contains add-ons for laser processing: for example, laser pulses can be triggered individually and pulse energies changed. This makes it possible to program complex transfer patterns and assign them to a specific processing result.

Applications at EPFL in Lausanne

The Swiss Federal Institute of Technology in Lausanne EPFL is performing research in inkjet printing for various applications in micro-engineering, material science and bio-engineering. “The new LIFT method is a very interesting alternative to conventional nozzle-based inkjet printing, as new classes of materials can be locally deposited with low material waste,” explains Prof. Juergen Brugger of the EPFL. “The fact that even very high viscous liquids and solid films can be locally transferred to a receiver substrate makes the technique very versatile for several of our research groups.” The scientists at EPFL will first perform basic research to study the morphology and materials properties of the deposited pattern and will then benchmark the LIFT method with conventional inkjet printing. Subsequently, research for selected applications in the fields of semiconductors, biomaterials or sensors will be addressed. EPFL will also allow students to work on the new LIFT tool, preparing thus future engineers and scientists to be familiar with innovative surface patterning methods to enable novel manufacturing schemes and ultimately new applications.

LIFTSYS at Biotechnica 2013

At this year’s Biotechnica – Europe’s no.1 event for biotechnology, life sciences, and lab technology, which will take place in Hannover, Germany, from October 8 to 10, 2013 – Fraunhofer ILT will be presenting its LIFTSYS machine for the application field of in vitro test systems. At the joint Fraunhofer booth in Hall 9.E09, experts will be demonstrating a prototype machine along with other exhibits from the field of biofabrication.

Contact

Dr. Martin Wehner
Head Biotechnology and Laser Therapy Group
Telefon: +49 241 8906-202
martin.wehner@ilt.fraunhofer.de

Petra Nolis | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>