Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-quality whey proteins for foodstuffs

17.01.2014
Whey resulting from cheese production contains valuable proteins that still often remain unused.

In the EU-funded project Whey2Food the University of Hohenheim and the Fraunhofer IGB, together with partners from industry, are investigating how high-quality whey proteins can be obtained for food with the assistance of a new electromembrane process.


Whey, which occurs as a waste material from cheese production, contains valuable proteins. In the project Whey2Food these proteins are selectively enriched for use in food products.

© Universität Hohenheim

The production of cheese and casein results in large quantities of whey. 81 million tonnes of the watery waste material come together per year in the EU alone. Nowadays about 40 per cent of this is already processed by filtration to make whey concentrate and further processed to provide a wide range of whey products. However, most of the whey still remains unused.

In addition to lactose and minerals, whey contains above all valuable milk proteins. Dr. Ana Lucia Vásquez, who heads the project at the IGB, describes the economic potential and the objective of the new project: “The proteins could be used in the food industry as a natural binding agent and as emulsifiers.” She further explains: “They are equally well suited as a functional food supplement in baby formula or dietary foods or as a source of proteins in sports drinks for athletes.”

For these applications the proteins first of all have to be isolated from the whey. There are already basic methods of obtaining specific milk proteins, for example the antithrombogenic casein macropeptide, from whey. However, the chromatographic techniques used for this purpose are complex and are not suitable for a high throughput. Whey concentrate is obtained by means of ultrafiltration. In this process the little whey molecules – water, minerals and lactose – pass through the pores of a membrane while proteins are retained. But here the proteins are only concentrated as a whole, but not separated according to functional protein fractions. Additionally, residues are quickly deposited on the membranes. This fouling impairs the filtration capability so that the membranes frequently have to be cleaned.

To enrich proteins selectively and to add them to foods in accordance with their nutritional or technological-functional properties, the Whey2Food project intends to further develop an electromembrame process initially investigated at the University of Hohenheim. “The method combines pressure filtration through a porous membrane with an electric field. The proteins are not only separated according to their size, but at the same time according to their charge,” Vásquez explains. Compared with ultrafiltration this increases the yield and reduces the cleaning required. “In preliminary tests trials we were able to demonstrate that peptides or protein fragments such as casein macropeptide can be separated from two further typical whey proteins, alpha-lactalbumin and beta-lactoglobulin, with the help of the electromembrane process,” says Professor Dr.-Ing. Jörg Hinrichs from the Institute of Food Science and Biotechnology at the University of Hohenheim.

Now the researchers want to optimize the process for industrially relevant quantities and in conformity with the hygiene and cleaning standards required for food manufacturers. “We will then test the process under realistic conditions in continuous operation with an automated pilot plant on the premises of our project partners Rovita and Schwarzwaldmilch,” says Vásquez. A further advantage of the electromembrane process is a reduction of the fouling. This also lowers the operating costs and the energy consumption.

Since the 1st November 2013 the project “Whey2Food – Enhanced protein fractionation from protein sources for their use in special food applications” is being funded within the scope of the EU-funded 7th Framework Research Program (Grant Agreement No. 605807). The German research partners Fraunhofer IGB and the University of Hohenheim as well as the Belgian VITO institute are developing the process together with a European consortium of companies.

Dr. Claudia Vorbeck | Fraunhofer-Institut
Further information:
http://www.igb.fraunhofer.de
http://www.igb.fraunhofer.de/en/press-media/press-releases/2014/whey2food.html

More articles from Process Engineering:

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

nachricht Sustainable products: Fraunhofer LBF investigates recycling of halogen-free flame retardant
17.02.2016 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>