Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-quality whey proteins for foodstuffs

17.01.2014
Whey resulting from cheese production contains valuable proteins that still often remain unused.

In the EU-funded project Whey2Food the University of Hohenheim and the Fraunhofer IGB, together with partners from industry, are investigating how high-quality whey proteins can be obtained for food with the assistance of a new electromembrane process.


Whey, which occurs as a waste material from cheese production, contains valuable proteins. In the project Whey2Food these proteins are selectively enriched for use in food products.

© Universität Hohenheim

The production of cheese and casein results in large quantities of whey. 81 million tonnes of the watery waste material come together per year in the EU alone. Nowadays about 40 per cent of this is already processed by filtration to make whey concentrate and further processed to provide a wide range of whey products. However, most of the whey still remains unused.

In addition to lactose and minerals, whey contains above all valuable milk proteins. Dr. Ana Lucia Vásquez, who heads the project at the IGB, describes the economic potential and the objective of the new project: “The proteins could be used in the food industry as a natural binding agent and as emulsifiers.” She further explains: “They are equally well suited as a functional food supplement in baby formula or dietary foods or as a source of proteins in sports drinks for athletes.”

For these applications the proteins first of all have to be isolated from the whey. There are already basic methods of obtaining specific milk proteins, for example the antithrombogenic casein macropeptide, from whey. However, the chromatographic techniques used for this purpose are complex and are not suitable for a high throughput. Whey concentrate is obtained by means of ultrafiltration. In this process the little whey molecules – water, minerals and lactose – pass through the pores of a membrane while proteins are retained. But here the proteins are only concentrated as a whole, but not separated according to functional protein fractions. Additionally, residues are quickly deposited on the membranes. This fouling impairs the filtration capability so that the membranes frequently have to be cleaned.

To enrich proteins selectively and to add them to foods in accordance with their nutritional or technological-functional properties, the Whey2Food project intends to further develop an electromembrame process initially investigated at the University of Hohenheim. “The method combines pressure filtration through a porous membrane with an electric field. The proteins are not only separated according to their size, but at the same time according to their charge,” Vásquez explains. Compared with ultrafiltration this increases the yield and reduces the cleaning required. “In preliminary tests trials we were able to demonstrate that peptides or protein fragments such as casein macropeptide can be separated from two further typical whey proteins, alpha-lactalbumin and beta-lactoglobulin, with the help of the electromembrane process,” says Professor Dr.-Ing. Jörg Hinrichs from the Institute of Food Science and Biotechnology at the University of Hohenheim.

Now the researchers want to optimize the process for industrially relevant quantities and in conformity with the hygiene and cleaning standards required for food manufacturers. “We will then test the process under realistic conditions in continuous operation with an automated pilot plant on the premises of our project partners Rovita and Schwarzwaldmilch,” says Vásquez. A further advantage of the electromembrane process is a reduction of the fouling. This also lowers the operating costs and the energy consumption.

Since the 1st November 2013 the project “Whey2Food – Enhanced protein fractionation from protein sources for their use in special food applications” is being funded within the scope of the EU-funded 7th Framework Research Program (Grant Agreement No. 605807). The German research partners Fraunhofer IGB and the University of Hohenheim as well as the Belgian VITO institute are developing the process together with a European consortium of companies.

Dr. Claudia Vorbeck | Fraunhofer-Institut
Further information:
http://www.igb.fraunhofer.de
http://www.igb.fraunhofer.de/en/press-media/press-releases/2014/whey2food.html

More articles from Process Engineering:

nachricht Active control of IBS processes in the near future
16.03.2015 | Laser Zentrum Hannover e.V.

nachricht One light arc, two wires and a laser: HoDopp – high power deposition welding
11.03.2015 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Researchers discover how body's good fat tissue communicates with brain

30.03.2015 | Life Sciences

For drivers with telescopic lenses, driving experience and training affect road test results

30.03.2015 | Health and Medicine

Climate change does not cause extreme winters

30.03.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>