Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-quality whey proteins for foodstuffs

17.01.2014
Whey resulting from cheese production contains valuable proteins that still often remain unused.

In the EU-funded project Whey2Food the University of Hohenheim and the Fraunhofer IGB, together with partners from industry, are investigating how high-quality whey proteins can be obtained for food with the assistance of a new electromembrane process.


Whey, which occurs as a waste material from cheese production, contains valuable proteins. In the project Whey2Food these proteins are selectively enriched for use in food products.

© Universität Hohenheim

The production of cheese and casein results in large quantities of whey. 81 million tonnes of the watery waste material come together per year in the EU alone. Nowadays about 40 per cent of this is already processed by filtration to make whey concentrate and further processed to provide a wide range of whey products. However, most of the whey still remains unused.

In addition to lactose and minerals, whey contains above all valuable milk proteins. Dr. Ana Lucia Vásquez, who heads the project at the IGB, describes the economic potential and the objective of the new project: “The proteins could be used in the food industry as a natural binding agent and as emulsifiers.” She further explains: “They are equally well suited as a functional food supplement in baby formula or dietary foods or as a source of proteins in sports drinks for athletes.”

For these applications the proteins first of all have to be isolated from the whey. There are already basic methods of obtaining specific milk proteins, for example the antithrombogenic casein macropeptide, from whey. However, the chromatographic techniques used for this purpose are complex and are not suitable for a high throughput. Whey concentrate is obtained by means of ultrafiltration. In this process the little whey molecules – water, minerals and lactose – pass through the pores of a membrane while proteins are retained. But here the proteins are only concentrated as a whole, but not separated according to functional protein fractions. Additionally, residues are quickly deposited on the membranes. This fouling impairs the filtration capability so that the membranes frequently have to be cleaned.

To enrich proteins selectively and to add them to foods in accordance with their nutritional or technological-functional properties, the Whey2Food project intends to further develop an electromembrame process initially investigated at the University of Hohenheim. “The method combines pressure filtration through a porous membrane with an electric field. The proteins are not only separated according to their size, but at the same time according to their charge,” Vásquez explains. Compared with ultrafiltration this increases the yield and reduces the cleaning required. “In preliminary tests trials we were able to demonstrate that peptides or protein fragments such as casein macropeptide can be separated from two further typical whey proteins, alpha-lactalbumin and beta-lactoglobulin, with the help of the electromembrane process,” says Professor Dr.-Ing. Jörg Hinrichs from the Institute of Food Science and Biotechnology at the University of Hohenheim.

Now the researchers want to optimize the process for industrially relevant quantities and in conformity with the hygiene and cleaning standards required for food manufacturers. “We will then test the process under realistic conditions in continuous operation with an automated pilot plant on the premises of our project partners Rovita and Schwarzwaldmilch,” says Vásquez. A further advantage of the electromembrane process is a reduction of the fouling. This also lowers the operating costs and the energy consumption.

Since the 1st November 2013 the project “Whey2Food – Enhanced protein fractionation from protein sources for their use in special food applications” is being funded within the scope of the EU-funded 7th Framework Research Program (Grant Agreement No. 605807). The German research partners Fraunhofer IGB and the University of Hohenheim as well as the Belgian VITO institute are developing the process together with a European consortium of companies.

Dr. Claudia Vorbeck | Fraunhofer-Institut
Further information:
http://www.igb.fraunhofer.de
http://www.igb.fraunhofer.de/en/press-media/press-releases/2014/whey2food.html

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>