Find the plug

More and more oil extraction takes place on the ocean floor –not the easiest place to reach when it comes to maintaining and repairing pipelines that don’t function the way they should. Researchers at the Norwegian University of Science and Technology have developed and patented a new technique called the pressure pulse method for finding plugs in oil pipelines on the ocean floor.

Robots in pipes

Wax deposits are currently the largest unsolved problem in underwater oil production. Oil that is sent from a platform was cooled when it passed through pipelines on the ocean’s bottom; as a result, deposits build up along the pipe’s interior.

Currently, when the flow through the pipe is restricted, the pipeline is shut down, and a robot is sent into the pipe to crawl its way through. Now and then these robots get stuck because they encounter obstructions that are simply too large for them. The operator then has to close off the pipeline and reverse the pressure, so as to get the robot unstuck. Sometimes the robot has to travel a long stretch of pipeline before it finds something to get started on. Both situations can take quite a long time.

Time is money in the oil industry, and lost production time can quickly become a costly affair. If a platform is closed for a longer period of several months because the pipelines are shut down, the costs can top NOK 10-100 million.

Water hammer

Professor Jon Steinar Gudmundsson, who developed the pressure pulse method, explains that he came up with the idea after he observed the shut-down of a geothermal well in Iceland.

”When a well like this is closed with the help of a pressure valve, a pressure wave is created. I realised that this pulse could be used for something constructive,” Gudmundsson explains.

The method is based on a seismic principle and is similar to an echo-sounder: A pressure pulse is sent out and the return signal is measured. “The principle is the same as what we call a ’water hammer’. That’s the bang you hear in a washing machine or a dishwasher when the flow of water to the machine is shut off quickly,” he says.

Mapping with sound

The reflected sound waves from the sound pulses can be measured using complex analytical methods. The measurements can then be used to create a map of the inside of the pipeline, right up to the next pressure vent. Such a map can show where the pipe narrows, and where the deposits are so thick that they plug the pipe. The information helps operators choose the best possible method for clearing the pipe.

Professor Gudmundsson’s idea uses existing installations to measure pressures. The pressure valve is already in place. The only thing that needs to be done is to close the valve quite quickly, which creates the pressure wave.

Markland Technology AS has been spun off of NTNU to sell the method to large oil companies, and has met with considerable success, says Gudmundsson. The business has been developed and licensed by Harald K. Celius.

Media Contact

Jon Steinar Gudmundsson alfa

More Information:

http://www.ntnu.no

All latest news from the category: Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors