Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy- and resource-efficient laser-based functionalizing of temperature-sensitive substrates

18.03.2013
As ever more is being demanded of the surfaces of components and parts, functional coatings are turning into a key technology for the 21st century.

Because conventional coating processes are increasingly coming up against their technological limits and are often too costly, the Fraunhofer Institute for Laser Technology ILT developed a resource-efficient process for laser-based functionalizing of nano- and microparticle materials. As well as being suitable for inline applications, this process is marked by a high degree of flexibility and energy efficiency, while also allowing gentle processing of temperature-sensitive substrates.


Coated bearing and engine components.
Picture source: Fraunhofer ILT. Aachen/Volker Lannert


Conductor paths on glass substrate.
Picture source: Fraunhofer ILT. Aachen

Whether it is transparent conductive layers, conductor paths on semiconductors, anti-reflective surfaces on displays, self-cleaning layers on highly transparent glass, or corrosion, scratch and wear protection layers on components subject to high mechanical stress: in almost every area of industrial manufacturing, there is a great need for functional layers to optimize the surface properties of all sorts of components.

Industrially established processes for the production of high-performance coatings tend to employ vacuum coating processes. But these are costly, as they require elaborate systems technology and due to the required batch processing. More affordable processes, such as electroplating or flame spraying, are either applicable only to certain classes of substrate or else display major drawbacks in terms of the layer characteristics they produce. Coating temperature-sensitive substrates is a particularly thorny challenge in this regard.

Energy-efficient coating of temperature-sensitive substrates

Scientists at Fraunhofer ILT, working with industry partners, have succeeded in developing a resource-efficient laser-based surface functionalization process. This process combines wet-chemical coating processes with a laser process for subsequent functionalizing of the applied material. For example, when coating a glass, plastic or semiconductor substrate, an indium tin oxide (ITO)-nanodispersion is printed onto the component using an inkjet process.

Next, a galvo scanner is used to guide a focused laser beam over the surface to be processed. Laser processing significantly increases the conductivity of the ITO layer, while putting the substrate under far less thermal stress and consuming far less energy than conventional furnace-based coating processes. The new laser-based coating process enables the gentle coating of substrates with a low temperature stability and thereby widens the scope of wet-chemical coating processes significantly.

Locally selective deposition saves on material

Using conventional processes to achieve a locally selective coating of surfaces is not possible or prohibitively expensive in most cases. Functional considerations dictate that any surplus material must be subsequently removed, sometimes using elaborate processes, and this results in an enormous cost disadvantage. In contrast, the fact that laser processes can be controlled with spatial and temporal precision means they are able to functionalize coating materials in exactly the right places on the component and with no wastage.

Suitability for inline applications

A further challenge in functionalizing surfaces is how to integrate the coating process into existing production lines. Conventional processes for a thermal post-treatment (e.g. furnace-based processes) cannot be easily integrated into production lines at low costs. Fraunhofer ILT’s laser coating process poses no such problems, since the printing and laser processes it features are ideal for inline applications. This saves manufacturers a huge amount of time and money.

Applications

Fraunhofer ILT’s laser-based coating process can be tailored to meet a wide variety of coating needs. Spatial adaption to the substrate geometry is done by the precise control of the laser intensity distribution. Furthermore the application of pulsed laser beams enables the precise temporal control. Besides creating conductor paths on substrates made of glass, silicon or polymers such as polyethylene terephthalate (PET), it can for instance also be used to apply ceramic corrosion and wear protection layers of zirconium dioxide onto hardened steel. This process is of particular relevance to automotive manufacturing, in which several million components must be coated each year so they can withstand high levels of static and dynamic stress as well as extremes of temperature.

Fraunhofer ILT at Hannover Messe

Our experts will be in Hannover on the joint IVAM booth C50.13 in hall 17 of Hannover Messe from April 8-12, 2013 to present various coated exhibits that highlight the breadth of applications for thin film processing.

Contacts:

Dipl.-Phys. Dominik Hawelka
Group Thin Film Processing
Phone +49 241 8906-676
dominik.hawelka@ilt.fraunhofer.de
Dr. Jochen Stollenwerk
Head of the Group Thin Film Processing
Phone +49 241 8906-411
jochen.stollenwerk@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>