Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy- and resource-efficient laser-based functionalizing of temperature-sensitive substrates

18.03.2013
As ever more is being demanded of the surfaces of components and parts, functional coatings are turning into a key technology for the 21st century.

Because conventional coating processes are increasingly coming up against their technological limits and are often too costly, the Fraunhofer Institute for Laser Technology ILT developed a resource-efficient process for laser-based functionalizing of nano- and microparticle materials. As well as being suitable for inline applications, this process is marked by a high degree of flexibility and energy efficiency, while also allowing gentle processing of temperature-sensitive substrates.


Coated bearing and engine components.
Picture source: Fraunhofer ILT. Aachen/Volker Lannert


Conductor paths on glass substrate.
Picture source: Fraunhofer ILT. Aachen

Whether it is transparent conductive layers, conductor paths on semiconductors, anti-reflective surfaces on displays, self-cleaning layers on highly transparent glass, or corrosion, scratch and wear protection layers on components subject to high mechanical stress: in almost every area of industrial manufacturing, there is a great need for functional layers to optimize the surface properties of all sorts of components.

Industrially established processes for the production of high-performance coatings tend to employ vacuum coating processes. But these are costly, as they require elaborate systems technology and due to the required batch processing. More affordable processes, such as electroplating or flame spraying, are either applicable only to certain classes of substrate or else display major drawbacks in terms of the layer characteristics they produce. Coating temperature-sensitive substrates is a particularly thorny challenge in this regard.

Energy-efficient coating of temperature-sensitive substrates

Scientists at Fraunhofer ILT, working with industry partners, have succeeded in developing a resource-efficient laser-based surface functionalization process. This process combines wet-chemical coating processes with a laser process for subsequent functionalizing of the applied material. For example, when coating a glass, plastic or semiconductor substrate, an indium tin oxide (ITO)-nanodispersion is printed onto the component using an inkjet process.

Next, a galvo scanner is used to guide a focused laser beam over the surface to be processed. Laser processing significantly increases the conductivity of the ITO layer, while putting the substrate under far less thermal stress and consuming far less energy than conventional furnace-based coating processes. The new laser-based coating process enables the gentle coating of substrates with a low temperature stability and thereby widens the scope of wet-chemical coating processes significantly.

Locally selective deposition saves on material

Using conventional processes to achieve a locally selective coating of surfaces is not possible or prohibitively expensive in most cases. Functional considerations dictate that any surplus material must be subsequently removed, sometimes using elaborate processes, and this results in an enormous cost disadvantage. In contrast, the fact that laser processes can be controlled with spatial and temporal precision means they are able to functionalize coating materials in exactly the right places on the component and with no wastage.

Suitability for inline applications

A further challenge in functionalizing surfaces is how to integrate the coating process into existing production lines. Conventional processes for a thermal post-treatment (e.g. furnace-based processes) cannot be easily integrated into production lines at low costs. Fraunhofer ILT’s laser coating process poses no such problems, since the printing and laser processes it features are ideal for inline applications. This saves manufacturers a huge amount of time and money.

Applications

Fraunhofer ILT’s laser-based coating process can be tailored to meet a wide variety of coating needs. Spatial adaption to the substrate geometry is done by the precise control of the laser intensity distribution. Furthermore the application of pulsed laser beams enables the precise temporal control. Besides creating conductor paths on substrates made of glass, silicon or polymers such as polyethylene terephthalate (PET), it can for instance also be used to apply ceramic corrosion and wear protection layers of zirconium dioxide onto hardened steel. This process is of particular relevance to automotive manufacturing, in which several million components must be coated each year so they can withstand high levels of static and dynamic stress as well as extremes of temperature.

Fraunhofer ILT at Hannover Messe

Our experts will be in Hannover on the joint IVAM booth C50.13 in hall 17 of Hannover Messe from April 8-12, 2013 to present various coated exhibits that highlight the breadth of applications for thin film processing.

Contacts:

Dipl.-Phys. Dominik Hawelka
Group Thin Film Processing
Phone +49 241 8906-676
dominik.hawelka@ilt.fraunhofer.de
Dr. Jochen Stollenwerk
Head of the Group Thin Film Processing
Phone +49 241 8906-411
jochen.stollenwerk@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>