Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electromagnetic fields as cutting tools

10.12.2009
The bodywork on motor vehicles must be sufficiently stable, but processing the high-strength steels involved – for example punching holes in them – can prove something of a challenge. A new steel-cutting process will save time, energy and money in the future.

Squealing tires and the crunch of impact – when an accident occurs, the steel sheets that form a motor vehicle’s bodywork must provide adequate impact protection and shield its passengers to the greatest extent possible.

But the strength of the steels that are used throw up their own challenges, for example when automobile manufacturers have to punch holes in them for cable routing. Struggling to pierce the hard steel, mechanical cutting tools rapidly wear out.

And because they also leave some unwanted material on the underside of the steel (burr, as the experts call it), additional time has to be spent on a finishing process. One possible alternative is to use lasers as cutters, but they require a great deal of energy, which makes the entire process time-consuming and costly.

Working together with a number of partners including Volkswagen, researchers at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Chemnitz have come up with another way to make holes in press-hardened steel bodywork. Dr. Verena Kräusel, head of department at the IWU, explains: “The new method is based on electromagnetic pulse technology (EMPT), which was previously used primarily to expand or neck aluminum tubes.

We’ve modified it to cut even hard steels. Whereas a laser takes around 1.4 seconds to cut a hole, EMPT can do the job in approximately 200 milliseconds – our method is up to seven times faster.” Another advantage is that it produces no burr, thus doing away with the need for a finishing process. Stamping presses become superfluous, and no costs arise from the need to replace worn-out parts.

The pulse generators comprise a coil, a capacitor battery, a charging device and high-current switches. When the switch closes, the capacitors discharge via the coil within a matter of microseconds, producing a high pulsed current. The coil converts the energy stored in the capacitors into magnetic energy. To be able to use this process to cut steel, the researchers simply had to modify the coil to ensure the resulting electromagnetic field is strong enough: the pressure with which the field hits the steel must be so high that it forcibly expels the material from the sheet. “The impact pressure on the steel is approximately 3,500 bar, which equates to the weight of three small cars on a single fingernail,” says Kräusel. PSTproducts GmbH in Alzenau provided the original EMPT system. With regard to the customer demands the researchers develop now the coils for various cutting geometries.

Dr.-Ing. Verena Kräusel | EurekAlert!
Further information:
http://www.iwu.fraunhofer.de

More articles from Process Engineering:

nachricht CeGlaFlex project: wafer-thin, unbreakable and flexible ceramic and glass
25.04.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Additive manufacturing, from macro to nano
11.04.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>