Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Electromagnetic fields as cutting tools

The bodywork on motor vehicles must be sufficiently stable, but processing the high-strength steels involved – for example punching holes in them – can prove something of a challenge. A new steel-cutting process will save time, energy and money in the future.

Squealing tires and the crunch of impact – when an accident occurs, the steel sheets that form a motor vehicle’s bodywork must provide adequate impact protection and shield its passengers to the greatest extent possible.

But the strength of the steels that are used throw up their own challenges, for example when automobile manufacturers have to punch holes in them for cable routing. Struggling to pierce the hard steel, mechanical cutting tools rapidly wear out.

And because they also leave some unwanted material on the underside of the steel (burr, as the experts call it), additional time has to be spent on a finishing process. One possible alternative is to use lasers as cutters, but they require a great deal of energy, which makes the entire process time-consuming and costly.

Working together with a number of partners including Volkswagen, researchers at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Chemnitz have come up with another way to make holes in press-hardened steel bodywork. Dr. Verena Kräusel, head of department at the IWU, explains: “The new method is based on electromagnetic pulse technology (EMPT), which was previously used primarily to expand or neck aluminum tubes.

We’ve modified it to cut even hard steels. Whereas a laser takes around 1.4 seconds to cut a hole, EMPT can do the job in approximately 200 milliseconds – our method is up to seven times faster.” Another advantage is that it produces no burr, thus doing away with the need for a finishing process. Stamping presses become superfluous, and no costs arise from the need to replace worn-out parts.

The pulse generators comprise a coil, a capacitor battery, a charging device and high-current switches. When the switch closes, the capacitors discharge via the coil within a matter of microseconds, producing a high pulsed current. The coil converts the energy stored in the capacitors into magnetic energy. To be able to use this process to cut steel, the researchers simply had to modify the coil to ensure the resulting electromagnetic field is strong enough: the pressure with which the field hits the steel must be so high that it forcibly expels the material from the sheet. “The impact pressure on the steel is approximately 3,500 bar, which equates to the weight of three small cars on a single fingernail,” says Kräusel. PSTproducts GmbH in Alzenau provided the original EMPT system. With regard to the customer demands the researchers develop now the coils for various cutting geometries.

Dr.-Ing. Verena Kräusel | EurekAlert!
Further information:

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>