Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Contact-free measurement of the liquid steel temperature increases productivity of electric arc furnaces

11.10.2010
Siemens expands the range of application of its RCB system

Simetal RCB Temp from Siemens VAI Metals Technologies offers operators of electric arc furnaces (EAF) a precise, contact-free method to measure steel bath temperatures. At the heart of Simetal RCB Temp is the Siemens Refining Combined Burner (RCB) system equipped with an optical sensor and analyzing unit.


Simetal RCB Temp from Siemens offers operators of electric arc furnaces (EAF) a precise, contact-free method to measure steel bath temperatures.

In contrast to conventional processes, the temperature can be measured at short intervals, so the best time to tap can be determined more exactly. As a result, power-on and power-off times are reduced for an increase in the EAF’s overall productivity. Measurement cartridges are also no longer required, further lowering operating costs. Simetal RCB Temp also improves operator safety by eliminating potentially hazardous work near the furnace.

Steel production in an EAF depends heavily on temperature control. Precise and reliable temperature measurements are required, especially before tapping the steel in the ladle. Measurements are usually taken through the open slag door, either manually or with manipulators fitted with conventional cartridges. Both processes are strenuous and hazardous for operating personnel, and restrict the number of measurements that can be made during steel refining. Furthermore, imprecise measurements and process disturbances have to be taken into account.

The new Simetal RCB Temp temperature measurement system is based on the proven Siemens RCB technology. The system consists of a burner with an integrated lance, which injects oxygen into the liquid steel bath via a supersonic jet. After preheating and cutting the scrap with the burner’s powerful flame, the lance mode is used to decarburize the molten steel. In order to measure the steel bath temperature, a measuring gas is blown in instead of oxygen. An optical sensor integrated into the back end of the lance picks up the measuring signal. This measuring signal is amplified and further processed in an analyzing unit. The temperature is then calculated by means of an algorithm specially developed by Siemens VAI.

Simetal RCB Temp allows precise measurement of the temperature at short intervals during power on and with a closed door. The measuring process can be initiated manually from the control room or automatically in HMI programs. The steel temperature increase is monitored and the EAF process is stopped without delays when the aimed tapping temperature is reached.

Integrating the temperature measurement into the RCB system also has a number of other advantages. Moving parts are no longer required. The position of the sensors at the back end of the RCB prevents the sensors from being damaged during charging, and the thermal stress on the sensors is insignificant. The furnace door remains closed, keeping cold air out. The furnace remains under electrical power and the necessary foaming slag process is not interrupted. Since measurement cartridges are not needed, operating costs are also reduced. Fitting or retrofitting Simetal RCB Temp does not take long and can be carried out easily during a planned maintenance shutdown.

Further information about solutions for steelworks, rolling mills and processing lines can be found under: http://www.siemens.com/metals

The Siemens Industry Sector (Erlangen, Germany) is the worldwide leading supplier of environmentally friendly production, transportation, building and lighting technologies. With integrated automation technologies and comprehensive industry-specific solutions, Siemens increases the productivity, efficiency and flexibility of its customers in the fields of industry and infrastructure. The Sector consists of six divisions: Building Technologies, Drive Technologies, Industry Automation, Industry Solutions, Mobility und Osram. With around 207,000 employees worldwide (September 30), Siemens Industry achieved in fiscal year 2009 total sales of approximately €35 billion.

The Siemens Industry Solutions Division (Erlangen, Germany) is one of the world's leading solution and service providers for industrial and infrastructure facilities comprising the business activities of Siemens VAI Metals Technologies, Water Technologies and Industrial Technologies. Activities include engineering and installation, operation and service for the entire life cycle. A wide-ranging portfolio of environmental solutions helps industrial companies to use energy, water and equipment efficiently, reduce emissions and comply with environmental guidelines. With around 31,000 employees worldwide (September 30), Siemens Industry Solutions posted sales of €6.8 billion in fiscal year 2009.

Dr. Rainer Schulze | Siemens Industry
Further information:
http://www.siemens.com/metals
http://www.siemens.com/industry
http://www.siemens.com/industry-solutions

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>