Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automated High Performance Deposition Welding of large Area Protective Layers

27.07.2012
400% faster speeds for deposition welding of wear and corrosion protection layers on large work pieces! The LZH and project partners are developing a completely new process which combines the advantages of gas metal-arc welding and laser welding. The material has a high purity level, and the first layer can provide the protective layer needed.

The Laser Zentrum Hannover e.V. (LZH) and three industrial partners have set a goal to achieve up to 400 percent higher process speeds for deposition welding of wear and corrosion protection layers on large work pieces. An absolutely new process combination of a non-transmitted light arc and laser-based warming of the work piece will be developed within the project HoDopp, which is for small and medium sized enterprises.

The welded material has a very high purity level, and should provide work piece protection with the very first layer applied.

In the gas metal-arc welding process currently in use, a light arc melts the wire electrode and the work piece simultaneously. The mixing rate for the materials is 30%, meaning that the coating process must be repeated up to three times to ensure sufficient quality of the protective layer. Using this process, with maximum deposition speeds of 5 kg/h, it can take up to 24 hours to coat a square meter area, and energy and personnel costs are high.

The project HoDopp, which started in June 2012, aims at reaching a four times higher deposition rate at up to 20 kg/h. At the same time, the welding depth should be reduced and mixing rates of

This can be achieved by combining two separate processes in a completely new way. In the southern German company MERKLE, a modified gas metal-arc deposition welding process is currently being optimized, in which the light arc burns between two electrodes, but does not come into contact with the work piece. By adapting the nozzle form and the burner position, and by reducing amount of the protective gas, a stable and sputter-free process is possible.

A second process step is being developed in the Materials and Processes Department at the LZH. A diode laser of the newest generation with a low output level of under 0.5 kW is used to achieve a low but homogeneous penetration depth on the work piece. The laser focusses on and melts work piece shortly before the melted wire meets the surface. A deflector device is used to the control temperature distribution.

For Jörg Hermsdorf, Head of the Machines and Controls group, this combination of the individual processes is ideal. “This combination can be used to exploit the advantages of both tools. High energy input is needed to melt the deposition material, and this is provided by the light arc. On the other hand, the laser uses a low output power and can be used for precise, guided control of joining the melted material to the base material.“

By combining this innovative light arc process with inexpensive diode laser technology, the project partners have calculated that process time can be reduced to only 6 hrs. for one square meter, making deposition welding highly attractive for areas larger than 1 x 2 meters. Being inexpensive and faster and at the same time with higher quality, this innovative process is interesting for many applications. Apart from the conventional tool and mold making applications in the automotive industry, this process can also be used for protective layers on shafts, rollers and clamping devices, for repairs on damaged transport systems, or for protective layers on the stressed areas of oil drilling shafts.

The project HoDopp is financed by the German Federal Ministry of Education and Research (BMBF) within a program for SME innovative production researching. Apart from the LZH and MERKLE, the firms G+F Strate GmbH and Druckguss Service Deutschland GmbH are taking part in the project, and are responsible for testing and quality assurance.

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover, Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de

The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>