Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automated High Performance Deposition Welding of large Area Protective Layers

27.07.2012
400% faster speeds for deposition welding of wear and corrosion protection layers on large work pieces! The LZH and project partners are developing a completely new process which combines the advantages of gas metal-arc welding and laser welding. The material has a high purity level, and the first layer can provide the protective layer needed.

The Laser Zentrum Hannover e.V. (LZH) and three industrial partners have set a goal to achieve up to 400 percent higher process speeds for deposition welding of wear and corrosion protection layers on large work pieces. An absolutely new process combination of a non-transmitted light arc and laser-based warming of the work piece will be developed within the project HoDopp, which is for small and medium sized enterprises.

The welded material has a very high purity level, and should provide work piece protection with the very first layer applied.

In the gas metal-arc welding process currently in use, a light arc melts the wire electrode and the work piece simultaneously. The mixing rate for the materials is 30%, meaning that the coating process must be repeated up to three times to ensure sufficient quality of the protective layer. Using this process, with maximum deposition speeds of 5 kg/h, it can take up to 24 hours to coat a square meter area, and energy and personnel costs are high.

The project HoDopp, which started in June 2012, aims at reaching a four times higher deposition rate at up to 20 kg/h. At the same time, the welding depth should be reduced and mixing rates of

This can be achieved by combining two separate processes in a completely new way. In the southern German company MERKLE, a modified gas metal-arc deposition welding process is currently being optimized, in which the light arc burns between two electrodes, but does not come into contact with the work piece. By adapting the nozzle form and the burner position, and by reducing amount of the protective gas, a stable and sputter-free process is possible.

A second process step is being developed in the Materials and Processes Department at the LZH. A diode laser of the newest generation with a low output level of under 0.5 kW is used to achieve a low but homogeneous penetration depth on the work piece. The laser focusses on and melts work piece shortly before the melted wire meets the surface. A deflector device is used to the control temperature distribution.

For Jörg Hermsdorf, Head of the Machines and Controls group, this combination of the individual processes is ideal. “This combination can be used to exploit the advantages of both tools. High energy input is needed to melt the deposition material, and this is provided by the light arc. On the other hand, the laser uses a low output power and can be used for precise, guided control of joining the melted material to the base material.“

By combining this innovative light arc process with inexpensive diode laser technology, the project partners have calculated that process time can be reduced to only 6 hrs. for one square meter, making deposition welding highly attractive for areas larger than 1 x 2 meters. Being inexpensive and faster and at the same time with higher quality, this innovative process is interesting for many applications. Apart from the conventional tool and mold making applications in the automotive industry, this process can also be used for protective layers on shafts, rollers and clamping devices, for repairs on damaged transport systems, or for protective layers on the stressed areas of oil drilling shafts.

The project HoDopp is financed by the German Federal Ministry of Education and Research (BMBF) within a program for SME innovative production researching. Apart from the LZH and MERKLE, the firms G+F Strate GmbH and Druckguss Service Deutschland GmbH are taking part in the project, and are responsible for testing and quality assurance.

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover, Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de

The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>