Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Zapping Titan-like atmosphere with UV rays creates life precursors

The nitrogen-dominated atmosphere and organic chemistry of Saturn's moon Titan may provide clues to the origin of life on Earth

The first experimental evidence showing how atmospheric nitrogen can be incorporated into organic macromolecules is being reported by a University of Arizona team.

The finding indicates what organic molecules might be found on Titan, the moon of Saturn that scientists think is a model for the chemistry of pre-life Earth.

Earth and Titan are the only known planetary-sized bodies that have thick, predominantly nitrogen atmospheres, said Hiroshi Imanaka, who conducted the research while a member of UA's chemistry and biochemistry department.

How complex organic molecules become nitrogenated in settings like early Earth or Titan's atmosphere is a big mystery, Imanaka said.

"Titan is so interesting because its nitrogen-dominated atmosphere and organic chemistry might give us a clue to the origin of life on our Earth," said Imanaka, now an assistant research scientist in the UA's Lunar and Planetary Laboratory. "Nitrogen is an essential element of life."

However, not just any nitrogen will do. Nitrogen gas must be converted to a more chemically active form of nitrogen that can drive the reactions that form the basis of biological systems.

Imanaka and Mark Smith converted a nitrogen-methane gas mixture similar to Titan's atmosphere into a collection of nitrogen-containing organic molecules by irradiating the gas with high-energy UV rays. The laboratory set-up was designed to mimic how solar radiation affects Titan's atmosphere.

Most of the nitrogen moved directly into solid compounds, rather than gaseous ones, said Smith, a UA professor and head of chemistry and biochemistry. Previous models predicted the nitrogen would move from gaseous compounds to solid ones in a lengthier stepwise process.

Titan looks orange in color because a smog of organic molecules envelops the planet. The particles in the smog will eventually settle down to the surface and may be exposed to conditions that could create life, said Imanaka, who is also a principal investigator at the SETI Institute in Mountain View, Calif.

However, scientists don't know whether Titan's smog particles contain nitrogen. If some of the particles are the same nitrogen-containing organic molecules the UA team created in the laboratory, conditions conducive to life are more likely, Smith said.

Laboratory observations such as these indicate what the next space missions should look for and what instruments should be developed to help in the search, Smith said.

Imanaka and Smith's paper, "Formation of nitrogenated organic aerosols in the Titan upper atmosphere," is scheduled for publication in the Early Online edition of the Proceedings of the National Academy of Sciences the week of June 28. NASA provided funding for the research.

The UA researchers wanted to simulate conditions in Titan's thin upper atmosphere because results from the Cassini Mission indicated "extreme UV" radiation hitting the atmosphere created complex organic molecules.

Therefore, Imanaka and Smith used the Advanced Light Source at Lawrence Berkeley National Laboratory's synchroton in Berkeley, Calif. to shoot high-energy UV light into a stainless steel cylinder containing nitrogen-and-methane gas held at very low pressure.

The researchers used a mass spectrometer to analyze the chemicals that resulted from the radiation.

Simple though it sounds, setting up the experimental equipment is complicated. The UV light itself must pass through a series of vacuum chambers on its way into the gas chamber.

Many researchers want to use the Advanced Light Source, so competition for time on the instrument is fierce. Imanaka and Smith were allocated one or two time slots per year, each of which was for eight hours a day for only five to 10 days.

For each time slot, Imanaka and Smith had to pack all the experimental equipment into a van, drive to Berkeley, set up the delicate equipment and launch into an intense series of experiments. They sometimes worked more than 48 hours straight to get the maximum out of their time on the Advanced Light Source. Completing all the necessary experiments took years.

It was nerve-racking, Imanaka said: "If we miss just one screw, it messes up our beam time."

At the beginning, he only analyzed the gases from the cylinder. But he didn't detect any nitrogen-containing organic compounds.

Imanaka and Smith thought there was something wrong in the experimental set-up, so they tweaked the system. But still no nitrogen.

"It was quite a mystery," said Imanaka, the paper's first author. "Where did the nitrogen go?"

Finally, the two researchers collected the bits of brown gunk that gathered on the cylinder wall and analyzed it with what Imanaka called "the most sophisticated mass spectrometer technique."

Imanaka said, "Then I finally found the nitrogen!"

Imanaka and Smith suspect that such compounds are formed in Titan's upper atmosphere and eventually fall to Titan's surface. Once on the surface, they contribute to an environment that is conducive to the evolution of life.

Research contact information:
Hiroshi Imanaka
520-621-7984, 520-621-4220
Languages: Japanese, English
Mark A. Smith, 520-621-5672
Related Web sites:
Mark A. Smith

UA department of chemistry and biochemistry

UA lunar and planetary laboratory

mnjensen | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>