Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-rays emitted from the remnant of a supernova provide clues to its explosive history

15.02.2010
X-rays emitted from the remnant of a supernova provide clues to its explosive history

The supernova remnant known as the Jellyfish Nebula and IC 443 lies 5,000 light years away from Earth in the Gemini constellation. Left after a stellar explosion, the remnant—hot plasma, surrounded by a cooler shell—is the first of its type to be observed by astronomers1. The finding is based on x-ray data collected aboard the Suzaku satellite.

“The satellite data have enabled us to investigate the explosion mechanisms that led to this supernova, as well as what was happening within the star before it exploded,” explains Hiroya Yamaguchi from the RIKEN Advanced Science Institute, Wako, who led the multi-institutional study.

Light, from long radio waves to x-rays, carries information about the activity in a stellar explosion. Both hot ions and fast moving electrons radiate x-rays in IC 443, which at 4,000 years old is considered a middle-aged remnant. Astronomers estimate the temperature of the ions and electrons in the remnant plasma by measuring the spectrum of these x-rays—that is, how the x-ray intensity varies with energy. The electron and ion temperatures, and any difference between them, yield clues as to how the star exploded and progressed through time.

Yamaguchi and his team noticed a curious discrepancy by analyzing the x-ray spectrum of IC 443: the silicon and sulfur ions, which are estimated to be a searing 14 million degrees Celsius, are nearly twice as hot as the electrons. In fact, the silicon and sulfur ions are so hot that some of them are completely stripped of their electrons.

“This is the first discovery of such spectral features in the x-rays emitted by a supernova remnant,” explains Yamaguchi.

This conclusive evidence for the process that astronomers call ‘overionization’ suggests that when the star that produced IC 443 exploded, a blast wave heated the dense gas around the star to the very high temperatures that stripped the electrons from the silicon and sulfur ions. This was followed by a shock wave that caused the gas to expand and allowed the electrons to cool, but rarefied the ions so much that they could not cool down again.

“Gamma-ray bursts and hypernova—which have energies more than 10 times that of supernova—are known to be some of the most energetic and explosive events in the universe, but the detailed explosion mechanism and nature of their progenitors are still unknown,” says Yamaguchi. “The application of our method will play an important role to solve these issues.”

The corresponding author for this highlight is based at the Cosmic Radiation Laboratory, RIKEN Advanced Science Institute

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6180
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>