Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The World´s Thinnest Ratchet - Publication in “Nature Nanotechnology”

20.02.2013
A ratchet supports one-way traffic. One can pull it back and forth, but it only moves forwards. Mechanical ratchets, used to pull or hold heavy objects, are familiar examples. Also, some electronic devices are based on ratchets.

Transistors are made out of diodes, which rectify electrical currents: however hard one pushes electrons in both directions, they flow only in one. Now an international consortium consisting of research groups from Germany, Russia, Sweden, and the U.S., led by the experimental group of Prof. Dr. Sergey Ganichev from the University of Regensburg and supported by the theoretical group of Prof. Dr. Sergey Tarasenko (St. Petersburg) and Prof. Dr. Jaroslav Fabian (Regensburg), has demonstrated that electronic ratchets can be successfully scaled down to one-atom thick layers.

The researchers showed that graphene, a single layer of carbon atoms arranged in a honeycomb lattice, supports a ratchet motion of electrons when placed in a magnetic field. They applied terahertz laser fields to push the electrons back and forth, while the magnetic field acted as a valve to let only those electrons moving in one direction go on, stopping the others. The results of the research group are reported in an issue of “Nature Nanotechnology” (DOI: 10.1038/nnano.2012.231).

Graphene may be the ultimate electronic material, possibly replacing silicon in electronic devices in the future. It has attracted worldwide attention from physicists, chemists, and engineers. Its discoverers, A. Geim and K. Novoselov, were awarded the physics Nobel Prize for it in 2010. The discovery of the ratchet motion in graphene greatly adds to the technological potential of this material and to the prospects of further miniaturization of electronic devices. Before carbon based electronics might take over from silicon many fundamental physical challenges need to be addressed.

In Regensburg, research activities on graphene are embedded in larger research programs, funded by the German Science Foundation (DFG). These are a PhD program on carbon based electronics (DFG-Research Training Group GRK 1570, spokesperson: Prof. Dr. Milena Grifoni) and a Collaborative Research Center (SFB 689, spokesperson: Prof. Dr. Dieter Weiss) funding more than 40 PhD students, as well as projects within a DFG Priority Programm (SPP 1459, spokesperson: Prof. Dr. Thomas Seyller, Chemnitz). The international cooperation on terahertz physics and technology is coordinated by the Regensburg Terahertz Center (TerZ, directed by Prof. Dr. Sergey Ganichev), also funded by the International Bureau of the German Ministry of Education and Research.

Title of the article in “Nature Nanotechnology”:
C. Drexler, S. Tarasenko, P. Olbrich, J. Karch, M. Hirmer, F. Müller, M. Gmitra, J. Fabian, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Wang, R. Vajtai, P. Ajayan, J. Kono, and S.D. Ganichev: Magnetic quantum ratchet effect in graphene, Nature Nanotechnology (DOI: 10.1038/nnano.2012.231).
More information on the research activities on grapheme in Regensburg:
www.physik.uni-regensburg.de/forschung/gk_carbonano/
www-app.uni-regensburg.de/Fakultaeten/Physik/sfb689/
www.spp1459.uni-erlangen.de/about-spp-1459/
Press Contact:
Prof. Dr. Sergey Ganichev
Universität Regensburg
Faculty of Physics
TerZ – Regensburg Terahertz Center
Tel.: +49 (0)941 943-2050
Sergey.Ganichev@physik.uni-regensburg.de

Alexander Schlaak | idw
Further information:
http://www.physik.uni-regensburg.de/TerZ/

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

Six-legged robots faster than nature-inspired gait

17.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>