Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World record: Quantum teleportation over 143 kilometres

06.09.2012
Physicists from the group of Prof. Anton Zeilinger at the Institute of Quantum Optics and Quantum Information (IQOQI) and the University of Vienna have set a new world record for distance in quantum teleportation.
The team succeeded in teleporting the quantum state of a particle of light over a separation of 143 kilometres from the Canary Island La Palma to Tenerife. The experiment got theoretical support from Dr. Johannes Kofler from the group of Prof. Ignacio Cirac at the Max Planck Institute of Quantum Optics (MPQ). The results are published this week in Nature.

The so-called "quantum internet" is a future vision for information processing. It is not based anymore on classical computer networks but on the current developments of modern quantum information, where individual quantum particles are the carriers of information. Quantum networks promise absolutely secure communication and enhanced computation power for decentralised tasks compared to any conceivable classical technology. Due to the transmission losses in conventional glass fibres a global quantum network will likely base on the free-space transfer of quantum states, e.g., between satellites and from satellites to ground. The now realized quantum teleportation over a distance of 143 kilometres, beating a just a few months old Chinese record of 97 kilometres, is a significant step towards this future technology.

On the island of La Palma the team of physicists produced entangled pairs of particles of light (photons 2 and 3, see figure). Quantum entanglement means that none of the photons taken by itself has a definite polarisation but that, if one measures the polarisation of one of the photons and obtains a random result, the other photon will always show a perfectly correlated polarisation. This type of quantum correlation cannot be described by classical physics and Albert Einstein therefore called it "spooky action at a distance". Photon 3 was then sent through the air to Tenerife, across the Atlantic Ocean at an altitude of about 2400 metres and over a distance of 143 kilometres, where it was caught by a telescope of the European Space Agency.
Photon 2 remained in the laboratory at La Palma. There, the experimenters created additional particles of light (photon 1 in the figure) in a freely selectable polarization state which they wanted to teleport. This was achieved in several steps: First, a special kind of joint measurement, the so-called Bell measurement ("BM"), was performed on photons 1 and 2, which irrevocably destroys both photons. Two possible outcomes of this measurement were discriminated, and the corresponding classical information was sent via a conventional laser pulse (violet in the figure) to Tenerife. There, depending on which of the outcomes of the Bell measurement had been received, the polarization of photon 3 was either rotated by 90 degrees or left completely unchanged. This transformation ("T") completed the teleportation process, and the polarization of photon 3 on Tenerife was now identical with the initial polarization of photon 1 on La Palma.

The complexity of the setup and the environmental conditions (changes of temperature, sand storms, fog, rain, snow) constituted a significant challenge for the experiment. They also demanded a combination of modern quantum optical technologies concerning the source of entangled particles of light, the measurement devices, and the temporal synchronization of the two laboratories. The experiment therefore represents a milestone, which demonstrates the maturity and applicability of these technologies for future global quantum networks. For the next step of satellite-based quantum teleportation an international collaboration of the Austrian and Chinese Academy of Sciences plans to shoot a satellite into space in the foreseeable future.

Picture download:
https://dl.dropbox.com/u/5536900/Nature/startrails-1.jpg (Copyright: IQOQI Vienna)
https://dl.dropbox.com/u/5536900/Nature/startrails-2.jpg (Copyright: IQOQI Vienna)

Original publication:
Xiao-song Ma, Thomas Herbst, Thomas Scheidl, Daqing Wang, Sebastian Kropatschek, William Naylor, Bernhard Wittmann, Alexandra Mech, Johannes Kofler, Elena Anisimova, Vadim Makarov, Thomas Jennewein, Rupert Ursin, Anton Zeilinger
Quantum teleportation over 143 kilometres using active feed-forward
Nature, 5 September 2012, Advance Online Publication, DOI:10.1038/nature11472

Contact:
Dr. Johannes Kofler
Max Planck Institute of Quantum Optics (MPQ)
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 89 32905 242
E-Mail: johannes.kofler@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht Light-emitting bubbles captured in the wild
28.02.2017 | Georg-August-Universität Göttingen

nachricht Scientists reach back in time to discover some of the most power-packed galaxies
28.02.2017 | Clemson University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>