Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inner workings of photosynthesis revealed by powerful new laser technique

09.02.2009
Instant pictures showing how the sun's energy moves inside plants have been taken for the first time, according to research out in Physical Review Letters.

The images unravel some of the inner workings of the most efficient solar energy process on earth - photosynthesis. Inside a photosynthetic protein, the sun's energy is efficiently guided across the molecule to drive a chemical reaction that stores energy as food and takes in carbon dioxide. Scientists would very much like to harness this process as they search for new energy solutions to replace fossil fuels. To do this, they need to understand this energy transport process in more detail.

Analysing energy transport is an important way of understanding the inner workings of a wide range of systems, from biological processes to car engines. However, in very small-scale systems such as photosynthetic molecules, quantum effects come into play making it difficult for scientists to explain how photosynthetic molecules are able to transport energy with remarkably high efficiency.

Until now, one of the major obstacles has been the lack of a direct way of probing some of the fundamental mechanisms involved in the flow of energy between electrons in molecules.

"These new pictures are instantaneous snap-shots of energy being transported between electrons across a protein. Remarkably, the pictures go further in unravelling the complex way the electrons interact. This gives us something akin to a fingerprint for electronic couplings," says Dr Ian Mercer from the School of Physics at University College Dublin, the lead author of the new study, who is a visiting researcher at Imperial College London.

The researchers probed a sample of a protein found in bacteria, called LH2, which was provided by the University of Glasgow. This bacterial protein was used because it harvests light in the same way as photosynthetic plant proteins. By illuminating the sample with a combination of high power laser pulses all derived from the same laser, the researchers obtained a map of bright spots on a camera in a tiny fraction of a second. The position of each spot corresponds to a unique angle of light emitted from the sample and this directly relates to how electrons in the protein respond to the laser light and to each other.

Alternative laser-based techniques for gathering such information do already exist, but require the sample to be exposed to the laser light for a long period, which may lead to sample degradation. They also require much more intensive computer processing.

The researchers needed a very powerful and stable laser in order to get the new approach to work efficiently and accurately. They used the Astra laser at the Science and Technology Facilities Council's Rutherford Appleton Laboratory (RAL). It incorporates state-of-the-art technology developed in the Physics Department at Imperial College London to produce pulses of light with the right properties for this experiment.

"The laser produces a very broad range of colours, which allowed us to map a broad range of energy levels in the protein. The availability of this laser source at RAL, which is accessible to a broad range of scientists, opens up a lot of new and exciting science - like this work", explains co-author of the study, Dr John Tisch from Imperial College London's Department of Physics.

With this laser, a map can be captured with a single pulse of laser light meaning that full information can be gathered prior to, or during, a chemical reaction. The technique can also be used to characterise high-value, delicate samples because only a small quantity of sample is required. And with one thousand laser pulses available per second from the laser, there is potential for rapid automated sample characterisation.

"More demonstrations are around the corner. Hopefully one day we will be able to harness the exquisite mechanisms that we learn about from molecules, whose function has been honed by evolution over hundreds of millions of years", says Dr Mercer. The researchers are currently applying this approach across the molecular biosciences and with electronic devices.

Danielle Reeves | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>