Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inner workings of photosynthesis revealed by powerful new laser technique

09.02.2009
Instant pictures showing how the sun's energy moves inside plants have been taken for the first time, according to research out in Physical Review Letters.

The images unravel some of the inner workings of the most efficient solar energy process on earth - photosynthesis. Inside a photosynthetic protein, the sun's energy is efficiently guided across the molecule to drive a chemical reaction that stores energy as food and takes in carbon dioxide. Scientists would very much like to harness this process as they search for new energy solutions to replace fossil fuels. To do this, they need to understand this energy transport process in more detail.

Analysing energy transport is an important way of understanding the inner workings of a wide range of systems, from biological processes to car engines. However, in very small-scale systems such as photosynthetic molecules, quantum effects come into play making it difficult for scientists to explain how photosynthetic molecules are able to transport energy with remarkably high efficiency.

Until now, one of the major obstacles has been the lack of a direct way of probing some of the fundamental mechanisms involved in the flow of energy between electrons in molecules.

"These new pictures are instantaneous snap-shots of energy being transported between electrons across a protein. Remarkably, the pictures go further in unravelling the complex way the electrons interact. This gives us something akin to a fingerprint for electronic couplings," says Dr Ian Mercer from the School of Physics at University College Dublin, the lead author of the new study, who is a visiting researcher at Imperial College London.

The researchers probed a sample of a protein found in bacteria, called LH2, which was provided by the University of Glasgow. This bacterial protein was used because it harvests light in the same way as photosynthetic plant proteins. By illuminating the sample with a combination of high power laser pulses all derived from the same laser, the researchers obtained a map of bright spots on a camera in a tiny fraction of a second. The position of each spot corresponds to a unique angle of light emitted from the sample and this directly relates to how electrons in the protein respond to the laser light and to each other.

Alternative laser-based techniques for gathering such information do already exist, but require the sample to be exposed to the laser light for a long period, which may lead to sample degradation. They also require much more intensive computer processing.

The researchers needed a very powerful and stable laser in order to get the new approach to work efficiently and accurately. They used the Astra laser at the Science and Technology Facilities Council's Rutherford Appleton Laboratory (RAL). It incorporates state-of-the-art technology developed in the Physics Department at Imperial College London to produce pulses of light with the right properties for this experiment.

"The laser produces a very broad range of colours, which allowed us to map a broad range of energy levels in the protein. The availability of this laser source at RAL, which is accessible to a broad range of scientists, opens up a lot of new and exciting science - like this work", explains co-author of the study, Dr John Tisch from Imperial College London's Department of Physics.

With this laser, a map can be captured with a single pulse of laser light meaning that full information can be gathered prior to, or during, a chemical reaction. The technique can also be used to characterise high-value, delicate samples because only a small quantity of sample is required. And with one thousand laser pulses available per second from the laser, there is potential for rapid automated sample characterisation.

"More demonstrations are around the corner. Hopefully one day we will be able to harness the exquisite mechanisms that we learn about from molecules, whose function has been honed by evolution over hundreds of millions of years", says Dr Mercer. The researchers are currently applying this approach across the molecular biosciences and with electronic devices.

Danielle Reeves | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>