Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann Institute scientists observe the largest exploding star yet seen

23.03.2009
Scientists from the Weizmann Institute of Science and San Diego State University managed to observe a super-sized supernova explosion from start to finish, including the black hole ending.

In the first observation if its kind, scientists at the Weizmann Institute of Science and San Diego State University were able to watch what happens when a star the size of 50 suns explodes. As they continued to track the spectacular event, they found that most of the star's mass collapsed in on itself, resulting in a large black hole.

While exploding stars - supernovae - have been viewed with everything from the naked eye to high-tech research satellites, no one had directly observed what happens when a really huge star blows up. Dr. Avishay Gal-Yam of the Weizmann Institute's Faculty of Physics and Prof. Douglas Leonard of San Diego State University recently located and calculated the mass of a gigantic star on the verge of exploding, following through with observations of the blast and its aftermath. Their findings have lent support to the reigning theory that stars ranging from tens to hundreds of times the mass of our sun all end up as black holes.

A star's end is predetermined from birth by its size and by the 'power plant' that keeps it shining during its lifetime. Stars, among them our sun, are fueled by hydrogen nuclei fusing together into helium in the intense heat and pressure of their inner cores. A helium nucleus is a bit lighter than the sum of the masses of the four hydrogen nuclei that went into making it and, from Einstein's theory of relativity (E=MC2), we know that the missing mass is released as energy.

When stars like our sun finish off their hydrogen fuel, they burn out relatively quietly in a puff of expansion. But a star that's eight or more times larger than the sun makes a much more dramatic exit. Nuclear fusion continues after the hydrogen is exhausted, producing heavier elements in the star's different layers. When this process progresses to the point that the core of the star has turned to iron, another phenomenon takes over: In the enormous heat and pressure in the star's center, the iron nuclei break apart into their component protons and neutrons. At some point, this causes the core and the layer above it to collapse inward, firing the rest of the star's material rapidly out into space in a supernova flash.

A supernova releases more energy in a few days than our sun will release over its entire lifetime, and the explosion is so bright that one occurring hundreds of light years away can be seen from Earth even in the daytime. While a supernova's outer layers are lighting up the universe with dazzling fireworks, the star's core collapses further and further inward. The gravity created in this collapse becomes so strong that the protons and electrons are squeezed together to form neutrons, and the star's core is reduced from a sphere 10,000 kilometers around to one with a circumference of a mere 10 kilometers. Just a crate-full of this star's material weighs as much as our entire Earth. But when the exploding star is 20 times the mass of our sun or more, say the scientists, its gravitational pull becomes so powerful that even light waves are held in place. Such a star - a black hole - is invisible for all intents and purposes.

Until now, none of the supernovae stars that scientists had managed to measure had exceeded a mass of 20 suns. Gal-Yam and Leonard were looking at a specific region in space using the Keck Telescope on Mauna Kea in Hawaii and the Hubble Space Telescope. Identifying the about-to-explode star, they calculated its mass to be equal to 50-100 suns. Continued observation revealed that only a small part of the star's mass was flung off in the explosion. Most of the material, says Gal-Yam, was drawn into the collapsing core as its gravitational pull mounted. Indeed, in subsequent telescope images of that section of the sky, the star seems to have disappeared. In other words, the star has now become a black hole - so dense that light can't escape.

Dr. Avishai Gal-Yam's research is supported by the Nella and Leon Benoziyo Center for Astrophysics; the Peter and Patricia Gruber Award; the Legacy Heritage Fund; and the William Z. and Eda Bess Novick Young Scientist Fund.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at
http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Batya Greenman | idw
Further information:
http://wis-wander.weizmann.ac.il
http://wis-wander.weizmann.ac.il/site/en/weizman.asp?pi=371&doc_id=5513
http://www.eurekalert.org

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>