Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann Institute scientists observe the largest exploding star yet seen

23.03.2009
Scientists from the Weizmann Institute of Science and San Diego State University managed to observe a super-sized supernova explosion from start to finish, including the black hole ending.

In the first observation if its kind, scientists at the Weizmann Institute of Science and San Diego State University were able to watch what happens when a star the size of 50 suns explodes. As they continued to track the spectacular event, they found that most of the star's mass collapsed in on itself, resulting in a large black hole.

While exploding stars - supernovae - have been viewed with everything from the naked eye to high-tech research satellites, no one had directly observed what happens when a really huge star blows up. Dr. Avishay Gal-Yam of the Weizmann Institute's Faculty of Physics and Prof. Douglas Leonard of San Diego State University recently located and calculated the mass of a gigantic star on the verge of exploding, following through with observations of the blast and its aftermath. Their findings have lent support to the reigning theory that stars ranging from tens to hundreds of times the mass of our sun all end up as black holes.

A star's end is predetermined from birth by its size and by the 'power plant' that keeps it shining during its lifetime. Stars, among them our sun, are fueled by hydrogen nuclei fusing together into helium in the intense heat and pressure of their inner cores. A helium nucleus is a bit lighter than the sum of the masses of the four hydrogen nuclei that went into making it and, from Einstein's theory of relativity (E=MC2), we know that the missing mass is released as energy.

When stars like our sun finish off their hydrogen fuel, they burn out relatively quietly in a puff of expansion. But a star that's eight or more times larger than the sun makes a much more dramatic exit. Nuclear fusion continues after the hydrogen is exhausted, producing heavier elements in the star's different layers. When this process progresses to the point that the core of the star has turned to iron, another phenomenon takes over: In the enormous heat and pressure in the star's center, the iron nuclei break apart into their component protons and neutrons. At some point, this causes the core and the layer above it to collapse inward, firing the rest of the star's material rapidly out into space in a supernova flash.

A supernova releases more energy in a few days than our sun will release over its entire lifetime, and the explosion is so bright that one occurring hundreds of light years away can be seen from Earth even in the daytime. While a supernova's outer layers are lighting up the universe with dazzling fireworks, the star's core collapses further and further inward. The gravity created in this collapse becomes so strong that the protons and electrons are squeezed together to form neutrons, and the star's core is reduced from a sphere 10,000 kilometers around to one with a circumference of a mere 10 kilometers. Just a crate-full of this star's material weighs as much as our entire Earth. But when the exploding star is 20 times the mass of our sun or more, say the scientists, its gravitational pull becomes so powerful that even light waves are held in place. Such a star - a black hole - is invisible for all intents and purposes.

Until now, none of the supernovae stars that scientists had managed to measure had exceeded a mass of 20 suns. Gal-Yam and Leonard were looking at a specific region in space using the Keck Telescope on Mauna Kea in Hawaii and the Hubble Space Telescope. Identifying the about-to-explode star, they calculated its mass to be equal to 50-100 suns. Continued observation revealed that only a small part of the star's mass was flung off in the explosion. Most of the material, says Gal-Yam, was drawn into the collapsing core as its gravitational pull mounted. Indeed, in subsequent telescope images of that section of the sky, the star seems to have disappeared. In other words, the star has now become a black hole - so dense that light can't escape.

Dr. Avishai Gal-Yam's research is supported by the Nella and Leon Benoziyo Center for Astrophysics; the Peter and Patricia Gruber Award; the Legacy Heritage Fund; and the William Z. and Eda Bess Novick Young Scientist Fund.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at
http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Batya Greenman | idw
Further information:
http://wis-wander.weizmann.ac.il
http://wis-wander.weizmann.ac.il/site/en/weizman.asp?pi=371&doc_id=5513
http://www.eurekalert.org

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>