Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water can flow below -130°C

27.06.2011
When water is cooled below zero degrees, it usually crystallizes directly into ice.

Ove Andersson, a physicist at Umeå University, has now managed to produce sluggishly flowing water at 130 degree below zero under high pressure – 10,000 times higher than normal pressure. It is possible that this sluggishly fluid and cold water exists on other heavenly bodies.

“The finding is also interesting in that it helps us understand the many abnormal properties of water. For example, it has been predicted that water would have two different liquid phases at low temperatures. The finding supports the existence of one of those two phases,” explains Ove Andersson.

From order to randomness

Water is extremely difficult to chill in a way that makes it sluggishly flowing. Ove Andersson has accomplished this feat by exposing crystalline ice, in which the atoms are arranged in an orderly manner, to increased pressure at temperatures below -130o C. The order of the molecules and the ice collapsed into amorphous ice, with random order among the water molecules.

“When I then raised the temperature, the ice transformed into sluggishly flowing water. This water is like regular water but its density is 35 percent higher, and the water molecules move relatively slowly, that is, the viscosity is high.”

Deviant behavior

Water has a great number of properties that deviate from normal behaviors. For example, in super cooled water, i.e. when the temperature drops below zero, the density decreases when the temperature is lowered and increases when it is raised.

“There are deviations that have been known for many years, and they are very important. Yet there is no general explanation for them, but the answer may lie in how the properties of water are affected when it’s exposed to high pressure,” says Ove Andersson.

Gradual transformation

Some theories are predicated upon water existing in two different liquid phases, one with low density and another with high density. The theories revolve around the transition between the phases taking place at low temperature and high pressure. When water cools and approaches this zone, there can be a gradual transformation that affects the properties and lends water its abnormal properties. Unfortunately this transformation is difficult to study, since water normally crystallizes. An alternative way to approach the zone is first to create amorphous ice. The new findings show that amorphous ice probably converts into sluggishly flowing water when it is warmed up under high pressure. Ove Andersson has thereby also verified the existence of one of the two fluid phases predicted to exist at low temperatures. °°°°

“This is an important piece of the puzzle of understanding the properties of water, and it opens new ° ° possibilities for studying sluggishly flowing water.”

Original publication:
Glass–liquid transition of water at high pressure
Ove Andersson, Umeå universitet
PNAS , The Proceedings of the National Academy of Sciences USA
For further information, please contact:
Ove Andersson, Department of Physics
Phone: +46 (0)90-786 50 34
E-mail: ove.andersson@physics.umu.se

Karin Wikman | idw
Further information:
http://www.vr.se
http://www.pnas.org/cgi/doi/10.1073/pnas.1016520108

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>