Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Walls falling faster for solid-state memory

10.06.2010
After running a series of complex computer simulations, researchers have found that flaws in the structure of magnetic nanoscale wires play an important role in determining the operating speed of novel devices using such nanowires to store and process information.

The finding*, made by researchers from the National Institute of Standards and Technology (NIST), the University of Maryland, and the University of Paris XI, will help to deepen the physical understanding and guide the interpretation of future experiments of these next-generation devices.

Magnetic nanowires store information in discrete bands of magnetic spins. One can imagine the nanowire like a straw sucking up and holding the liquid of a meticulously layered chocolate and vanilla milkshake, with the chocolate segments representing 1s and the vanilla 0s. The boundaries between these layers are called domain walls. Researchers manipulate the information stored on the nanowire using an electrical current to push the domain walls, and the information they enclose, through the wire and past immobile read and write heads.

Interpretations of experiments seeking to measure how domain walls move have largely ignored the effects of "disorder"—usually the result of defects or impurities in the structure of the nanowires. To see how disorder affects the motion of these microscopic magnetic domains, NIST researchers and their colleagues introduced disorder into their computer simulations.

Their simulations showed that disorder, which causes friction within the nanowires, can increase the rate at which a current can move domain walls.

According to NIST physicist Mark Stiles, friction can cause the domain walls to move faster because they need to lose energy in order to move down the wire.

For example, when a gyroscope spins, it resists the force of gravity. If a little friction is introduced into the gyroscope's bearing, the gyroscope will fall over more quickly. Similarly, in the absence of damping, a domain wall will only move from one side of the nanowire to the other. Disorder within the nanowire enables the domain walls to lose energy, which gives them the freedom to "fall" down the length of the wire as they move back and forth.

"We can say that the domain wall is moving as if it were in a system that has considerably greater effective damping than the actual damping," says NIST physicist and lead researcher Hongki Min. "This increase in the effective damping is significant enough that it should affect the interpretation of most future domain wall experiments."

* H. Min, R.D. McMichael, M.J. Donahue, J. Miltat and M.D. Stiles. Effects of disorder and internal dynamics on vortex wall propagation. Phys. Rev. Lett. 104, 217201. May 26, 2010. http://prl.aps.org/abstract/PRL/v104/i21/e217201.

Mark Esser | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>