Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Walls falling faster for solid-state memory

10.06.2010
After running a series of complex computer simulations, researchers have found that flaws in the structure of magnetic nanoscale wires play an important role in determining the operating speed of novel devices using such nanowires to store and process information.

The finding*, made by researchers from the National Institute of Standards and Technology (NIST), the University of Maryland, and the University of Paris XI, will help to deepen the physical understanding and guide the interpretation of future experiments of these next-generation devices.

Magnetic nanowires store information in discrete bands of magnetic spins. One can imagine the nanowire like a straw sucking up and holding the liquid of a meticulously layered chocolate and vanilla milkshake, with the chocolate segments representing 1s and the vanilla 0s. The boundaries between these layers are called domain walls. Researchers manipulate the information stored on the nanowire using an electrical current to push the domain walls, and the information they enclose, through the wire and past immobile read and write heads.

Interpretations of experiments seeking to measure how domain walls move have largely ignored the effects of "disorder"—usually the result of defects or impurities in the structure of the nanowires. To see how disorder affects the motion of these microscopic magnetic domains, NIST researchers and their colleagues introduced disorder into their computer simulations.

Their simulations showed that disorder, which causes friction within the nanowires, can increase the rate at which a current can move domain walls.

According to NIST physicist Mark Stiles, friction can cause the domain walls to move faster because they need to lose energy in order to move down the wire.

For example, when a gyroscope spins, it resists the force of gravity. If a little friction is introduced into the gyroscope's bearing, the gyroscope will fall over more quickly. Similarly, in the absence of damping, a domain wall will only move from one side of the nanowire to the other. Disorder within the nanowire enables the domain walls to lose energy, which gives them the freedom to "fall" down the length of the wire as they move back and forth.

"We can say that the domain wall is moving as if it were in a system that has considerably greater effective damping than the actual damping," says NIST physicist and lead researcher Hongki Min. "This increase in the effective damping is significant enough that it should affect the interpretation of most future domain wall experiments."

* H. Min, R.D. McMichael, M.J. Donahue, J. Miltat and M.D. Stiles. Effects of disorder and internal dynamics on vortex wall propagation. Phys. Rev. Lett. 104, 217201. May 26, 2010. http://prl.aps.org/abstract/PRL/v104/i21/e217201.

Mark Esser | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>