Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Walking droplets

02.10.2013
Strange behavior of bouncing drops, described in the journal 'Physics of Fluids' demonstrates pilot-wave dynamics in action

A research team led by Yves Couder at the Université Paris Diderot recently discovered that it's possible to make a tiny fluid droplet levitate on the surface of a vibrating bath, walking or bouncing across, propelled by its own wave field. Surprisingly, these walking droplets exhibit certain features previously thought to be exclusive to the microscopic quantum realm.


A droplet of silicone oil bounces in place on a vibrating fluid bath.

Credit: Dan Harris and John Bush/MIT

This finding of quantum-like behavior inspired another team of researchers, at the Massachusetts Institute of Technology (MIT), to examine the dynamics of these walking droplets. They describe their findings in the journal Physics of Fluids.

"This walking droplet system represents the first realization of a pilot-wave system. Its great charm is that it can be achieved with a tabletop experiment and that the walking droplets are plainly visible," explained John Bush, professor of applied mathematics in the Department of Mathematics at MIT. "In addition to being a rich, subtle dynamical system worthy of interest in its own right, it gives us the first opportunity to view pilot-wave dynamics in action."

The dynamics of the walking droplets are reminiscent of the pilot-wave dynamics proposed by Louis de Broglie in 1926 to describe the motion of quantum particles, in which microscopic particles such as electrons move in resonance with an accompanying guiding wave. Pilot-wave theory wasn't widely accepted and was superseded by the Copenhagen Interpretation of quantum mechanics, in which the macroscopic and microscopic worlds are philosophically distinct.

"Of course, if we ever hope to establish a link with quantum dynamics, it's important to first understand the subtleties of this fluid system," said Bush. "Our recent article is the culmination of work spearheaded by my graduate student, Jan Molacek, who developed a theoretical model to describe the dynamics of bouncing and walking droplets by answering questions such as: Which droplets can bounce? Which can walk? In what manner do they walk and bounce? When they walk, how fast do they go?"

In the team's article, Molacek's theoretical developments were compared to the results of a careful series of experiments performed by Øistein Wind-Willassen, a graduate student visiting from the Danish Technical University, on an experimental rig designed by Bush's graduate student, Dan Harris.

"Molacek's work also led to a trajectory equation for walking droplets, which is currently being explored by my graduate student Anand Oza," Bush said. "Our next step is to use this equation to better understand the emergence of quantization and wave-like statistics, both hallmarks of quantum mechanics, in this hydrodynamic pilot-wave system."

The researchers will now seek and explore new quantum analogs, with the ultimate goal of understanding the potential and limitations of this walking-droplet system as a quantum analog system.

The paper, "Exotic states of bouncing and walking droplets," authored by Øistein Wind-Willassen, Jan Molacek, Daniel M. Harris, and John W. Bush, appears in the journal Physics of Fluids. See: http://dx.doi.org/10.1063/1.4817612

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See: http://pof.aip.org

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>