Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Walking droplets

02.10.2013
Strange behavior of bouncing drops, described in the journal 'Physics of Fluids' demonstrates pilot-wave dynamics in action

A research team led by Yves Couder at the Université Paris Diderot recently discovered that it's possible to make a tiny fluid droplet levitate on the surface of a vibrating bath, walking or bouncing across, propelled by its own wave field. Surprisingly, these walking droplets exhibit certain features previously thought to be exclusive to the microscopic quantum realm.


A droplet of silicone oil bounces in place on a vibrating fluid bath.

Credit: Dan Harris and John Bush/MIT

This finding of quantum-like behavior inspired another team of researchers, at the Massachusetts Institute of Technology (MIT), to examine the dynamics of these walking droplets. They describe their findings in the journal Physics of Fluids.

"This walking droplet system represents the first realization of a pilot-wave system. Its great charm is that it can be achieved with a tabletop experiment and that the walking droplets are plainly visible," explained John Bush, professor of applied mathematics in the Department of Mathematics at MIT. "In addition to being a rich, subtle dynamical system worthy of interest in its own right, it gives us the first opportunity to view pilot-wave dynamics in action."

The dynamics of the walking droplets are reminiscent of the pilot-wave dynamics proposed by Louis de Broglie in 1926 to describe the motion of quantum particles, in which microscopic particles such as electrons move in resonance with an accompanying guiding wave. Pilot-wave theory wasn't widely accepted and was superseded by the Copenhagen Interpretation of quantum mechanics, in which the macroscopic and microscopic worlds are philosophically distinct.

"Of course, if we ever hope to establish a link with quantum dynamics, it's important to first understand the subtleties of this fluid system," said Bush. "Our recent article is the culmination of work spearheaded by my graduate student, Jan Molacek, who developed a theoretical model to describe the dynamics of bouncing and walking droplets by answering questions such as: Which droplets can bounce? Which can walk? In what manner do they walk and bounce? When they walk, how fast do they go?"

In the team's article, Molacek's theoretical developments were compared to the results of a careful series of experiments performed by Øistein Wind-Willassen, a graduate student visiting from the Danish Technical University, on an experimental rig designed by Bush's graduate student, Dan Harris.

"Molacek's work also led to a trajectory equation for walking droplets, which is currently being explored by my graduate student Anand Oza," Bush said. "Our next step is to use this equation to better understand the emergence of quantization and wave-like statistics, both hallmarks of quantum mechanics, in this hydrodynamic pilot-wave system."

The researchers will now seek and explore new quantum analogs, with the ultimate goal of understanding the potential and limitations of this walking-droplet system as a quantum analog system.

The paper, "Exotic states of bouncing and walking droplets," authored by Øistein Wind-Willassen, Jan Molacek, Daniel M. Harris, and John W. Bush, appears in the journal Physics of Fluids. See: http://dx.doi.org/10.1063/1.4817612

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See: http://pof.aip.org

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>