Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vesta Likely Cold and Dark Enough for Ice

26.01.2012
Though generally thought to be quite dry, roughly half of the giant asteroid Vesta is expected to be so cold and to receive so little sunlight that water ice could have survived there for billions of years, according to the first published models of Vesta's average global temperatures and illumination by the sun.

"Near the north and south poles, the conditions appear to be favorable for water ice to exist beneath the surface," says Timothy Stubbs of NASA's Goddard Space Flight Center in Greenbelt, Md., and the University of Maryland, Baltimore County. Stubbs and Yongli Wang of the Goddard Planetary Heliophysics Institute at the University of Maryland published the models in the January 2012 issue of the journal Icarus. The models are based on information from telescopes including NASA's Hubble Space Telescope.


This image obtained by the framing camera on NASA's Dawn spacecraft shows the south pole of the giant asteroid Vesta. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Vesta, the second-most massive object in the asteroid belt between Mars and Jupiter, probably does not have any significant permanently shadowed craters where water ice could stay frozen on the surface all the time, not even in the roughly 300-mile-diameter (480-kilometer-diameter) crater near the south pole, the authors note. The asteroid isn't a good candidate for permanent shadowing because it is tilted on its axis at about 27 degrees, which is even greater than Earth's tilt of roughly 23 degrees. In contrast, the moon, which does have permanently shadowed craters, is tilted at only about 1.5 degrees. As a result of its large tilt, Vesta has seasons, and every part of the surface is expected to see the sun at some point during Vesta's year.

The presence or absence of water ice on Vesta tells scientists something about the tiny world's formation and evolution, its history of bombardment by comets and other objects, and its interaction with the space environment. Because similar processes are common to many other planetary bodies, including the moon, Mercury and other asteroids, learning more about these processes has fundamental implications for our understanding of the solar system as a whole. This kind of water ice is also potentially valuable as a resource for further exploration of the solar system.

Though temperatures on Vesta fluctuate during the year, the model predicts that the average annual temperature near Vesta's north and south poles is less than roughly minus 200 degrees Fahrenheit (145 kelvins). That is the critical average temperature below which water ice is thought to be able to survive in the top 10 feet or so (few meters) of the soil, which is called regolith.

Near Vesta's equator, however, the average yearly temperature is roughly minus 190 degrees Fahrenheit (150 kelvins), according to the new results. Based on previous modeling, that is expected to be high enough to prevent water from remaining within a few meters of the surface. This band of relatively warm temperatures extends from the equator to about 27 degrees north and south in latitude.

"On average, it's colder at Vesta's poles than near its equator, so in that sense, they are good places to sustain water ice," says Stubbs. "But they also see sunlight for long periods of time during the summer seasons, which isn't so good for sustaining ice. So if water ice exists in those regions, it may be buried beneath a relatively deep layer of dry regolith."

The modeling also indicates that relatively small surface features, such as craters measuring around 6 miles (10 kilometers) in diameter, could significantly affect the survival of water ice. "The bottoms of some craters could be cold enough on average -- about 100 kelvins -- for water to be able to survive on the surface for much of the Vestan year [about 3.6 years on Earth]," Stubbs explains. "Although, at some point during the summer, enough sunlight would shine in to make the water leave the surface and either be lost or perhaps redeposit somewhere else."

So far, Earth-based observations suggest that the surface of Vesta is quite dry. However, the Dawn spacecraft is getting a much closer view. Dawn is investigating the role of water in the evolution of planets by studying Vesta and Ceres, two bodies in the asteroid belt that are considered remnant protoplanets – baby planets whose growth was interrupted when Jupiter formed.

Dawn is looking for water using the gamma ray and neutron detector (GRaND) spectrometer, which can identify hydrogen-rich deposits that could be associated with water ice. The spacecraft recently entered a low orbit that is well suited to collecting gamma ray and neutron data.

"Our perceptions of Vesta have been transformed in a few months as the Dawn spacecraft has entered orbit and spiraled closer to its surface," says Lucy McFadden, a planetary scientist at NASA Goddard and a Dawn mission co-investigator. "More importantly, our new views of Vesta tell us about the early processes of solar system formation. If we can detect evidence for water beneath the surface, the next question will be is it very old or very young, and that would be exciting to ponder."

The modeling done by Stubbs and Wang, for example, relies on information about Vesta's shape. Before Dawn, the best source of that information was a set of images taken by NASA's Hubble Space Telescope in 1994 and 1996. But now, Dawn and its camera are getting a much closer view of Vesta.

"The Dawn mission gives researchers a rare opportunity to observe Vesta for an extended period of time, the equivalent of about one season on Vesta," says Stubbs. "Hopefully, we'll know in the next few months whether the GRaND spectrometer sees evidence for water ice in Vesta's regolith. This is an important and exciting time in planetary exploration."

Dawn's mission to Vesta and Ceres is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Science Mission Directorate in Washington. JPL is a division of the California Institute of Technology in Pasadena. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Ala. UCLA is responsible for overall Dawn mission science. Orbital Sciences Corp. in Dulles, Va., designed and built the spacecraft. The German Aerospace Center, the Max Planck Institute for Solar System Research, the Italian Space Agency and the Italian National Astrophysical Institute are international partners on the mission team. The asteroid modeling by Stubbs and Wang is an extension of analysis originally applied to the moon and partially funded by the NASA Lunar Science Institute.

Elizabeth Zubritsky 301-614-5438
Goddard Space Flight Center, Greenbelt, Md.
elizabeth.a.zubritsky@nasa.gov
Jia-Rui Cook
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0850
jccook@jpl.nasa.gov

Elizabeth Zubritsky | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/dawn/news/dawn20120125.html

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>