Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNL scientists develop novel X-ray device

25.11.2013
Research quality X-rays could have widespread applications

Using a compact but powerful laser, a research team at the University of Nebraska-Lincoln has developed a new way to generate synchrotron X-rays.


Nathan Powers, member of a research team that developed a laser-driven X-ray device, shows the accelerator used generate synchrotron X-rays.

Credit: Greg Nathan, University Communications, University of Nebraska-Lincoln

Although the high quality of synchrotron X-rays make them ideal for research ranging from the structure of matter to advanced medical images, access to the technology has been limited until now. Most traditional synchrotron X-ray devices are gigantic and costly, available only at a few sites around the world.

As reported in this week's issue of the top-ranked optics journal Nature Photonics, researchers at UNL's Extreme Light Laboratory developed a novel method to generate research-quality X-rays using a "tabletop" laser.

"Our hope is that this new technology will lead to applications that benefit both science and society," said Nathan Powers, a Ph.D. student and first author of the journal article.

Physics professor Donald Umstadter, director of the Extreme Light Laboratory, led the research project. He compared the synchrotron X-ray breakthrough to the development of personal computers, giving more people access to computing power once available only via large and costly mainframe computers. Shrinking components of advanced laser-based technology will increase the feasibility of producing high-quality X-rays in medical and university research laboratories, which in turn could lead to new applications for the X-rays.

Because the new X-ray device could be small enough to fit in a hospital or on a truck, it could lead to more widespread applications for advanced X-ray technology, UNL scientists said. New applications might include Homeland Security detecting nuclear materials concealed within a shielded container; doctors finding cancerous tumors at earlier stages; or scientists studying extremely fast reactions that occur too rapidly for observation with conventional X-rays.

Ever since synchrotron X-ray light sources were developed more than 60 years ago, they have grown in size. Some now equal the size of a college campus, with a cost in the hundreds of millions of dollars. These huge machines continue to be built, most recently in Australia and Brazil.

Like supercomputers, they provide scientists with the most advanced research capabilities, yet they are not feasible for most practical applications. Though synchrotron X-rays result in lower doses of radiation as well as high-quality images, the tens of thousands of compact X-ray devices currently in operation in hospitals or at ports worldwide produce lower quality X-rays.

In traditional synchrotron machines, electrons are accelerated to extremely high energy and then made to change direction periodically, leading them to emit energy at X-ray wavelength. At the European Synchrotron Radiation Facility in Grenoble, France, the electrons circle near the speed of light in a storage ring of 844 meters in circumference. Magnets are used to change the direction of the electrons and produce X-rays.

Pursuing an alternative approach in the recent experiments, the UNL team replaced both the electron accelerator and the magnets with laser light. They first focused their laser beam onto a gas jet, creating a beam of relativistic electrons. They then focused another laser beam onto the accelerated electron beam. This rapidly vibrated the electrons, which in turn caused them to emit a bright burst of synchrotron X-rays—a process referred to as Compton scattering. Remarkably, the light's photon energy was increased during this process by a million-fold. And yet, the combined length of the accelerator and synchrotron was less than the size of a dime.

"The X-rays that were previously generated with compact lasers lacked several of the distinguishing characteristics of synchrotron light, such as a relatively pure and tunable color spectrum, " Umstadter said. "Instead, those X-rays resembled the 'white light' emitted by the sun."

The new laser-driven device produces X-rays over a much larger range of photon energies, extending to the energy of nuclear gamma rays. Even fewer conventional synchrotron X-ray sources are capable of producing such high photon energy. Key to the breakthrough was finding a way to collide the two micro-thin beams—the scattering laser beam and the laser-accelerated electron beam.

"Our aim and timing needed to be as good as that of two sharpshooters attempting to collide their bullets in midair," Umstadter said. "Colliding our 'bullets' might have even been harder, since they travel at nearly the speed of light."

Donald Umstadter | EurekAlert!
Further information:
http://www.unl.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>