Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recommend this page:
To (Recipient's email address)
Your name (Optional)
From (Your email address)
Message (Optional)
Datenschutz-Hinweis: Die Mailadressen werden von uns weder gespeichert noch an Dritte weitergegeben. Sie werden ausschließlich zu Übertragungszwecken verwendet.

University of Toronto physicists take quantum leap toward ultra-precise measurement

03.06.2014

For the first time, physicists at the University of Toronto (U of T) have overcome a major challenge in the science of measurement using quantum mechanics. Their work paves the way for great advances in using quantum states to enable the next generation of ultra-precise measurement technologies.

"We've been able to conduct measurements using photons – individual particles of light – at a resolution unattainable according to classical physics," says Lee Rozema, a Ph.D. candidate in Professor Aephraim Steinberg's quantum optics research group in U of T's Department of Physics, and one of the lead authors along with M.Sc. candidate James Bateman of a report on the discovery published online today in Physical Review Letters. "This work opens up a path for using entangled states of light to carry out ultra-precise measurements."


University of Toronto physics students James Bateman (left) and Lee Rozema (right) led a study which successfully measured multiple photons in an entangled NOON state. The work paves the way for great advances in using quantum states to enable the next generation of ultra-precise measurement technologies.

Credit: Diana Tyszko

Many of the most sensitive measurement techniques in existence, from ultra-precise atomic clocks to the world's largest telescopes, rely on detecting interference between waves – which occurs, for example, when two or more beams of light collide in the same space. Manipulating interference by producing photons in a special quantum state known as an "entangled" state – the sort of state famously dismissed by a skeptical Albert Einstein as implying "spooky action at a distance" – provided the result Rozema and his colleagues were looking for. The entangled state they used contains N photons which are all guaranteed to take the same path in an interferometer – either all N take the left-hand path or all N take the right-hand path, but no photons leave the pack.

The effects of interference are measured in devices known as "interferometers." It is well known that the resolution of such a device can be improved by sending more photons through it – when classical light beams are used, increasing the number of photons (the intensity of the light) by a factor of 100 can improve the resolution of an interferometer by a factor of 10. However, if the photons are prepared in a quantum-entangled state, an increase by a factor of 100 should improve the resolution by that same full factor of 100.

The scientific community already knew resolution could be improved by using entangled photons. Once scientists figured out how to entangle multiple photons the theory was proved correct but only up to a point. As the number of entangled photons rose, the odds of all photons reaching the same detector and at the same time became astronomically small, rendering the technique useless in practice.

So Rozema and his colleagues developed a way to employ multiple detectors in order to measure photons in entangled states. They designed an experimental apparatus that uses a "fibre ribbon" to collect photons and send them to an array of 11 single-photon detectors.

"This allowed us to capture nearly all of the multi-photons originally sent," says Rozema. "Sending single photons as well as two, three and four entangled photons at a time into our device produced dramatically improved resolution."

The U of T experiment built on a proposal by National University of Singapore physicist Mankei Tsang. In 2009, Tsang posited the idea of placing detectors at every possible position a photon could reach so that every possible event could be recorded, whether or not multiple photons hit the same detector. This would enable the calculation of the average position of all the detected photons, and could be done without having to discard any of them. The theory was quickly tested with two photons and two detectors by University of Ottawa physicist Robert Boyd.

"While two photons are better than one, we've shown that 11 detectors are far better than two," says Steinberg, summarising their advancement on Boyd's results. "As technology progresses, using high-efficiency detector arrays and on-demand entangled-photons sources, our techniques could be used to measure increasingly higher numbers of photons with higher resolution."

The discovery is reported in a study titled "Scalable spatial superresolution using entangled photons" published in the June 6 issue of Physical Review Letters. It is recommended as an Editor's Suggestion, and is accompanied by a commentary in the journal Physics which describes the work as a viable approach to efficiently observing superresolved spatial interference fringes that could improve the precision of imaging and lithography systems.

###

In addition to Steinberg, Rozema and Bateman's collaborators on the research included Dylan Mahler, Ryo Okamoto of Hokkaido and Osaka Universities, Amir Feizpour, and Alex Hayat, now at the Technion - Israel Institute of Technology. Support for the research was provided by the Natural Sciences and Engineering Research Council of Canada and the Canadian Institute for Advanced Research, as well as the Yamada Science Foundation.

MEDIA CONTACTS:

Lee Rozema
Department of Physics
University of Toronto
lrozema@physics.utoronto.ca
416-946-3162

Aephraim Steinberg
Department of Physics
University of Toronto
steinberg@physics.utoronto.ca
416-978-0713

Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto
s.bettam@utoronto.ca
416-946-7950

Sean Bettam | Eurek Alert!
Further information:
http://www.utoronto.ca

Further reports about: Physics detector detectors measurement measurements photons spatial techniques

More articles from Physics and Astronomy:

nachricht Donuts, math, and superdense teleportation of quantum information
29.05.2015 | University of Illinois College of Engineering

nachricht Physicists precisely measure interaction between atoms and carbon surfaces
29.05.2015 | University of Washington

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>