Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Toronto physicists take quantum leap toward ultra-precise measurement

03.06.2014

For the first time, physicists at the University of Toronto (U of T) have overcome a major challenge in the science of measurement using quantum mechanics. Their work paves the way for great advances in using quantum states to enable the next generation of ultra-precise measurement technologies.

"We've been able to conduct measurements using photons – individual particles of light – at a resolution unattainable according to classical physics," says Lee Rozema, a Ph.D. candidate in Professor Aephraim Steinberg's quantum optics research group in U of T's Department of Physics, and one of the lead authors along with M.Sc. candidate James Bateman of a report on the discovery published online today in Physical Review Letters. "This work opens up a path for using entangled states of light to carry out ultra-precise measurements."


University of Toronto physics students James Bateman (left) and Lee Rozema (right) led a study which successfully measured multiple photons in an entangled NOON state. The work paves the way for great advances in using quantum states to enable the next generation of ultra-precise measurement technologies.

Credit: Diana Tyszko

Many of the most sensitive measurement techniques in existence, from ultra-precise atomic clocks to the world's largest telescopes, rely on detecting interference between waves – which occurs, for example, when two or more beams of light collide in the same space. Manipulating interference by producing photons in a special quantum state known as an "entangled" state – the sort of state famously dismissed by a skeptical Albert Einstein as implying "spooky action at a distance" – provided the result Rozema and his colleagues were looking for. The entangled state they used contains N photons which are all guaranteed to take the same path in an interferometer – either all N take the left-hand path or all N take the right-hand path, but no photons leave the pack.

The effects of interference are measured in devices known as "interferometers." It is well known that the resolution of such a device can be improved by sending more photons through it – when classical light beams are used, increasing the number of photons (the intensity of the light) by a factor of 100 can improve the resolution of an interferometer by a factor of 10. However, if the photons are prepared in a quantum-entangled state, an increase by a factor of 100 should improve the resolution by that same full factor of 100.

The scientific community already knew resolution could be improved by using entangled photons. Once scientists figured out how to entangle multiple photons the theory was proved correct but only up to a point. As the number of entangled photons rose, the odds of all photons reaching the same detector and at the same time became astronomically small, rendering the technique useless in practice.

So Rozema and his colleagues developed a way to employ multiple detectors in order to measure photons in entangled states. They designed an experimental apparatus that uses a "fibre ribbon" to collect photons and send them to an array of 11 single-photon detectors.

"This allowed us to capture nearly all of the multi-photons originally sent," says Rozema. "Sending single photons as well as two, three and four entangled photons at a time into our device produced dramatically improved resolution."

The U of T experiment built on a proposal by National University of Singapore physicist Mankei Tsang. In 2009, Tsang posited the idea of placing detectors at every possible position a photon could reach so that every possible event could be recorded, whether or not multiple photons hit the same detector. This would enable the calculation of the average position of all the detected photons, and could be done without having to discard any of them. The theory was quickly tested with two photons and two detectors by University of Ottawa physicist Robert Boyd.

"While two photons are better than one, we've shown that 11 detectors are far better than two," says Steinberg, summarising their advancement on Boyd's results. "As technology progresses, using high-efficiency detector arrays and on-demand entangled-photons sources, our techniques could be used to measure increasingly higher numbers of photons with higher resolution."

The discovery is reported in a study titled "Scalable spatial superresolution using entangled photons" published in the June 6 issue of Physical Review Letters. It is recommended as an Editor's Suggestion, and is accompanied by a commentary in the journal Physics which describes the work as a viable approach to efficiently observing superresolved spatial interference fringes that could improve the precision of imaging and lithography systems.

###

In addition to Steinberg, Rozema and Bateman's collaborators on the research included Dylan Mahler, Ryo Okamoto of Hokkaido and Osaka Universities, Amir Feizpour, and Alex Hayat, now at the Technion - Israel Institute of Technology. Support for the research was provided by the Natural Sciences and Engineering Research Council of Canada and the Canadian Institute for Advanced Research, as well as the Yamada Science Foundation.

MEDIA CONTACTS:

Lee Rozema
Department of Physics
University of Toronto
lrozema@physics.utoronto.ca
416-946-3162

Aephraim Steinberg
Department of Physics
University of Toronto
steinberg@physics.utoronto.ca
416-978-0713

Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto
s.bettam@utoronto.ca
416-946-7950

Sean Bettam | Eurek Alert!
Further information:
http://www.utoronto.ca

Further reports about: Physics detector detectors measurement measurements photons spatial techniques

More articles from Physics and Astronomy:

nachricht Winds a quarter the speed of light spotted leaving mysterious binary systems
29.04.2016 | University of Cambridge

nachricht Possible Extragalactic Source of High-Energy Neutrinos
28.04.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>