Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


University of Georgia researchers show component of mothballs is present in deep-space clouds

Interstellar clouds, drifting through the unimaginable vastness of space, may be the stuff dreams are made of. But it turns out there's an unexpectedly strange component in those clouds, and it's not dreams but—mothballs?

Well, not exactly, but researchers from the University of Georgia have just shown for the first time that one component of clouds emitting unusual infrared light know as the Unidentified Infrared Bands (UIRs) is a gaseous version of naphthalene, the chief component of mothballs back on Earth. The UIRs have been seen by astronomers for more than 30 years, but no one has ever identified what specific molecules cause these patterns.

The discovery that a special kind of naphthalene with a single extra proton is out in space is important to those studying interstellar regions for many reasons. One of the most important is that the UIRs are associated with interstellar dust, and understanding the components of that dust could give clues to the origin of these mysterious voyagers. The new information may also provide insights into stellar lifecycles.

The research, led by Michael Duncan, Regents Professor of Chemistry at UGA, was just published in the Astrophysical Journal. The department of chemistry is part of UGA's Franklin College of Arts and Sciences. Co-authors on the paper were Allen Ricks, a doctoral student in Duncan's lab and Gary Douberly, formerly a postdoctoral associate in Duncan's lab and now an assistant professor in the department of chemistry at UGA.

The work was supported by the National Science Foundation.

"This came about because we found a way in our lab to make protonated naphthalene ions," said Duncan, "and that allowed us to examine its infrared spectrum. It turned out to be a near-perfect match for one of the main features in the UIRs."

That naphthalene is part of the UIRs is not totally unexpected, as it is composed of only hydrogen and carbon. Hydrogen composes by far the largest part of interstellar clouds, and carbon is another abundant element there. (This is known because scientists can measure their "light signals" or spectra and compare them to such spectra that can be generated in labs.) Still, it opens an entirely new area of study for astrophysicists and chemists who continue to understand the composition of space and the origins of the Universe.

Most people know naphthalene in its earthly crystalline form as C10H8, meaning it has 10 molecules of carbon and eight of hydrogen. The spectrum of this form of naphthalene does not match the UIRs. Duncan and his colleagues, however, had reason to believe that adding an extra proton to naphthalene (from the abundant hydrogen in space), which latches on in an unlikely space collision to give it the formula C10H9 +, might cause just the kind of change in its spectrum to match the UIR pattern.

To see if the component out there in space is protonated naphthalene, they had to first create it in the lab, under conditions near Absolute Zero and then zap it with a laser, turning it into a gas, whose infrared spectrum could then be analyzed. The bad news is that "infrared" refers to radiation whose wavelength is longer than that of visible light and so can't be seen by the naked eye. The good news is that the sophisticated machines in Duncan's lab can both "see" infrared spectrum, and identify what molecule produced it, allowing the distinctive spectrum of protonated naphthalene to be measure for the first time.

It turned out that when Duncan and his team did all this, the spectrum from their laboratory-created protonated naphthalene was almost identical to the spectrum seen in one part of the UIR.

What does it all mean? First, other scientists had found that interstellar dust is responsible for the production of molecular hydrogen from its atoms, which is the principal component of interstellar clouds. Other chemical processes taking place on the surface of dust grains are believed to form many molecules found on Earth, perhaps including the amino acids and peptides essential as the building blocks of life. And it is in these clouds that new stars form, so understanding how naphthalene fits into the equation (so to speak) of all this could provide insights into how stars and planetary systems form.

The new research also helps confirm earlier predictions that molecules called polycyclic aromatic hydrocarbons (PAHs) are the main source of the UIRs, since protonated naphthalene is a PAH.

"Protonated naphthalene itself does not explain all the UIR spectra," said Duncan, "but the characteristics of its spectrum suggest that a distribution of larger protonated PAHs could do this. The same spectral changes caused by the addition of protons to these larger systems would likely explain all the UIR patterns, thus ending one of the oldest mysteries in astronomy." Duncan and his group are now working to make and study these larger protonated PAHs.

Duncan's success in simulating the conditions of deep space in the lab and capturing that elusive proton could also have a payoff in studying other components of stellar clouds too.

Philiip Lee Williams | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>